Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
RSC Adv ; 13(21): 14393-14411, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37180000

ABSTRACT

The limitations of oxide semiconductor-based solar cells in achieving high energy conversion efficiencies have prompted incessant research efforts towards the creation of efficient heterostructures. Despite its toxicity, no other semiconducting material can fully replace CdS as a versatile visible light-absorbing sensitizer. Herein, we explore the aptness of preheating treatment in the successive ionic layer adsorption and reaction (SILAR) deposition technique and improve the understanding of the principle and the effects of a controlled growth environment on thus-formed CdS thin films. Single hexagonal phases of nanostructured cadmium sulfide (CdS)-sensitized zinc oxide nanorods arrays (ZnO NRs) have been developed without the support of any complexing agent. The influences of film thickness, cationic solution pH and post-thermal treatment temperature on the characteristics of binary photoelectrodes have been investigated experimentally. Interestingly, the preheating-assisted deposition of CdS, which is rarely applied for the SILAR technique, resulted in improved photoelectrochemical performance similar to the post-annealing effect. The X-ray diffraction pattern revealed that optimized ZnO/CdS thin films were polycrystalline with high crystallinity. Examination of the morphology of the fabricated films via field emission scanning electron microscopy showed that film thickness and medium pH altered the growth mechanism of nanoparticles, thereby changing their particle sizes, which had a significant influence on the film's optical behavior. The effectiveness of CdS as a photosensitizer and the band edge alignment for ZnO/CdS heterostructures were evaluated using ultra-violet visible spectroscopy. Facile electron transfer in the binary system as evidenced in electrochemical impedance spectroscopy Nyquist plots, therefore, promotes higher photoelectrochemical efficiencies from 0.40% to 4.30% under visible light illumination as compared with the pristine ZnO NRs photoanode.

2.
Polymers (Basel) ; 14(3)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35160572

ABSTRACT

Nanotechnology finds its application almost in every field of science and technology. At the same time, it also helps to find the solution to various environment-related problems, especially water contamination. Nanomaterials have many advantages over conventional materials, such as high surface area, both polar and non-polar chemistries, controlled and size-tunable, easier biodegradation, which made them ideal candidates for water and environmental remediation as well. Herein, applications of non-carbon nanomaterials, such as layered double hydroxides, iron oxide magnetite nanoparticles, nano-polymer composites, metal oxide nanomaterials and nanomembranes/fibers in heavy metal contaminated water and environmental remediation are reviewed. These non-carbon nanomaterials, due to their tunable unique chemistry and small size have greater potentials for water and environmental remediation applications.

3.
Polymers (Basel) ; 13(23)2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34883656

ABSTRACT

Recently, the antibacterial properties of Carvacrol (Carv) have been significantly reported. However, due to the unstable properties of Carv under various environment conditions, research approaches tailored towards its widespread and efficient use in various antimicrobial applications are scarce. Here, we discuss progress towards overcoming this challenge by utilising the encapsulation of Carv in gellan gum hydrogels to form thin films (GG-Carv) containing different concentrations of Carv (0.01-0.32 M). FTIR spectrum of GG-Carv revealed that both functional groups from GG and Carv existed. The carbon, hydrogen and nitrogen elemental analysis further supported the encapsulation of Carv with the changes in the element percentage of GG-Carv. Both swelling and degradation percentage increased with time and the decreasing patterns were observed as the concentration of Carv increased. In an antibacterial study, GG-Carv exhibited significant antibacterial activity against E. coli with the clear inhibition zone of 200 mm and the detection of bacterial growth showed enhancement with continuous decline throughout the study as compared to free-standing Carv.

4.
Nanomaterials (Basel) ; 11(11)2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34835897

ABSTRACT

Heavy metal contamination in water poses a great risk to human health as well as to the lives of other creatures. Activated carbon is a useful material to be applied for the treatment of heavy metal-contaminated water. In this study, functionalized activated carbon (FAC) was produced by the induction of nitro groups onto activated carbon using nitric acid. The resulting material was characterized in detail using the XRD, Raman, BET, FTIR, and FESEM techniques. The FAC was used for the treatment of heavy metal-contaminated water using different adsorption parameters, i.e., solution pH, contact time, adsorbent dosage and heavy metal ion concentrations, and these parameters were systematically optimized. It was found that FAC requires 90 min for the maximum adsorption of the heavy metal ions; Cr6+, Pb2+, Zn2+ and Cd2+. The kinetic study revealed that the metal ion adsorption follows the pseudo-second-order. The Freundlich and Langmuir isotherms were applied to determine the best fitting adsorption isotherm models. The adsorption capacities were also determined for each metal ion.

5.
Polymers (Basel) ; 13(11)2021 May 27.
Article in English | MEDLINE | ID: mdl-34071758

ABSTRACT

In the present study, we explored the effectiveness of PES-Ag3PO4/g-C3N4 film photocatalyst in degrading methyl orange dye under visible light irradiation. The PES-Ag3PO4/g-C3N4 film photocatalyst was prepared via a non-solvent-induced phase inversion process and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), laser scanning microscopy (LSM), X-ray photoelectron spectra (XPS), UV-diffuse reflectance (DRS), and water contact angle. The incorporation of the Ag3PO4/g-C3N4 composite into the PES matrix improved the pristine PES film's hydrophilicity, as evidenced by the reduction of water contact angle from 79.03° to 54.33° for a film containing 15 wt % of Ag3PO4/g-C3N4 composite. The film's photoactivity showed that 13 wt % was the best loading of Ag3PO4/g-C3N4 composite, and the degradation performance was maintained up to three cycles. The •O2- and h+ were the predominant species responsible for the methyl orange degradation.

6.
Nanomaterials (Basel) ; 11(3)2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33809677

ABSTRACT

Solid acid catalyzed cracking of waste oil-derived fatty acids is an attractive route to hydrocarbon fuels. HZSM-5 is an effective acid catalyst for fatty acid cracking; however, its microporous nature is susceptible to rapid deactivation by coking. We report the synthesis and application of hierarchical HZSM-5 (h-HZSM-5) in which silanization of pre-crystallized zeolite seeds is employed to introduce mesoporosity during the aggregation of growing crystallites. The resulting h-HZSM-5 comprises a disordered array of fused 10-20 nm crystallites and mesopores with a mean diameter of 13 nm, which maintain the high surface area and acidity of a conventional HZSM-5. Mesopores increase the yield of diesel range hydrocarbons obtained from oleic acid deoxygenation from ~20% to 65%, attributed to improved acid site accessibility within the hierarchical network.

7.
RSC Adv ; 11(49): 30925, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-35498943

ABSTRACT

[This corrects the article DOI: 10.1039/D0RA09265G.].

8.
RSC Adv ; 11(43): 26700-26709, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-35479972

ABSTRACT

A facile and simple pulse electrodeposition method was employed to deposit Mn2O3 nanoparticles on cathodically reduced titania nanotubes (R-TNTs) at different deposition time in the range of 3-15 min to investigate the influence of mass loading of Mn2O3 on the electrochemical performance of Mn2O3/R-TNTs nanocomposite for supercapacitor application. Mn2O3 nanoparticles were deposited on circumference of R-TNTs as well as in the nanotubes as revealed by FESEM images for all the deposited time. XPS result confirmed the presence of MnO2 (Mn4+) and MnO (Mn2+) on the Mn2O3/R-TNTs composite which provide pseudocapacitive behaviour for the electrode. Mass loading of Mn2O3 increased linearly with deposition time as confirmed by EDX analysis. The sample deposited for 12 min exhibits the highest areal capacitance of 51 mF cm-2 (which is 22 times enhancement over R-TNTs) at a current density of 0.1 mA cm-2 and specific capacitance of 325 F g-1 at 6 A g-1. The sample also show a high-rate capability by retaining 80% of its capacitance even at higher current density of 30 A g-1. Interestingly, it retained 98% of the capacitance over 5000 charge discharge cycles at 10 A g-1 after initial drop to 95% at 200th cycles suggesting an excellent long-term chemical stability. A considerably low equivalent series resistance (ESR) and charge transfer resistance (R ct) of 9.6 Ω and 0.4 Ω respectively was deduced from electrochemical impedance spectroscopy (EIS) analysis indicating good conductivity and improved charge transfer efficiency of Mn2O3/R-TNTs nanocomposite.

9.
RSC Adv ; 11(7): 3963-3971, 2021 Jan 19.
Article in English | MEDLINE | ID: mdl-35424351

ABSTRACT

The preparation of graphene in three-dimensional mode represents an alternative method to maintain its characteristically large surface area, which, under normal circumstances, is diminished by the restacking of the individual sheets. Sufficiently stable 3D graphene enables the high surface area characteristic of monoatomic graphene layers to be obtained. Based on the coupling of the high surface area and the void spaces that are thus created, which act as pores, 3D graphene is anticipated to have potential as a sorbent material. In this study, lightweight 3D hollow graphene featuring a unique thin skeletal framework was developed using the Pickering emulsion route for oil absorbent applications. In this technique, toluene droplets stabilized by graphene oxide layers in a water system were used as the template, and upon the removal of the solvent by freeze-drying and microwave-assisted reduction, 3D hollow graphene was obtained. The produced 3D graphene demonstrates excellent sorption efficiencies of 84 to 145 g g-1 for different types of oil and organic solvents in the first absorption. This excellence can be attributed to its multi-level porosity as elucidated by mercury intrusion porosimetry (MIP) and Brunauer-Emmett-Teller (BET) surface area analysis, which indicated a bimodal pore size distribution with macroporosity and mesoporosity and a surface area of 127 m2 g-1. The 3D hollow graphene prepared using the Pickering emulsion template technique incorporating microwave treatment can be readily recycled using a solvent extraction process for a total of ten sorption-desorption cycles without significant losses in its efficiency, making it promising for further consideration as an appropriate material for oil spill incidents.

10.
Sci Rep ; 10(1): 15047, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32929140

ABSTRACT

The effect of the surface area of palm kernel shell activated carbon (PKSAC) on the properties of n-octadecane-encapsulated shape stabilized phase change material (SSPCM) for thermal energy storage (TES) application were studied. Various surface areas of the PKSAC were prepared using different amounts of H3PO4 treatment given to palm kernel shells from 0, 5, 10, 30 and 40% before the activation. The impregnation of n-octadecane into the different surface areas of PKSACs produced SSPCMs with different physico-chemical characteristics. The DSC analysis indicates that the higher the surface area of the PKSAC resulted in the higher freezing temperature due to the higher PCM loading that was encapsulated into the PKSAC pores. The results obtained from XRD, FESEM, Raman spectroscopy, TGA/DTG and leakage study indicate that the PKSAC is a good framework material for the development of n-octadecane-encapsulated SSPCM. It was also found that the surface area and porosity of the frameworks, activated carbon play an important role on the PCM loading percentage and their ability to be used as a thermal energy storage material.

11.
Water Sci Technol ; 82(3): 454-467, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32960791

ABSTRACT

Many attempts have been made to improve the photocatalytic performance of immobilized photocatalysts for large-scale applications by modification of the photocatalyst properties. In this work, immobilized bilayer photocatalyst composed of titanium dioxide (TiO2) and chitosan-montmorillonite (CS-MT) were prepared in a layer-by-layer arrangement supported on glass substrate. This arrangement allows a simultaneous occurrence of adsorption and photocatalysis processes of pollutants, whereby each layer could be independently modified and controlled to acquire the desired degree of occurring processes. It was found that the addition of MT clay within the CS composite sub-layer improved the mechanical strength of CS, reduced its swelling and shifted its absorption threshold to higher wavelengths. In addition, the band gap energy of the photocatalyst was also reduced to 2.93 eV. The immobilized TiO2/CS-MT exhibited methyl orange (MO) decolourization rate of 0.071 min-1 under light irradiation, which is better than the single TiO2 due to the synergistic processes of adsorption by CS-MT and photocatalysis by TiO2 layer. The MO dye took 6 h to achieve complete mineralization and produced sulfate and nitrate ions as the by-products. Furthermore, the immobilized TiO2/CS-MT could be reused for at least ten cycles of application without significant loss of its activity.


Subject(s)
Bentonite , Chitosan , Azo Compounds , Catalysis , Photolysis , Titanium
12.
Eur J Pharm Sci ; 133: 167-182, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30902654

ABSTRACT

Thymoquinone is an effective phytochemical compound in the treatment of various diseases. However, its practical administration has been limited due to poor aqueous solubility and bioavailability. In this work, we developed a novel inclusion complex of thymoquinone and hydroxypropyl-ß-cyclodextrin that features improved solubility and bioactivity. The drug solubility was markedly accelerated in the increasing ratio of hydroxypropyl-ß-cyclodextrin to thymoquinone amount. The formation of the thymoquinone/hydroxypropyl-ß-cyclodextrin inclusion complex was evidenced using X-ray diffraction, differential scanning calorimetry, thermal gravimetric analysis, Fourier transform infrared, scanning electron microscopy and nuclear magnetic resonance. The release behavior of the complex, as well as of their mixtures, was examined in artificial gastric (pH 1.2) and intestinal (pH 6.8) dissolution media. The formulated complex released the drug rapidly at the initial stage, followed by a slow release. Thermodynamic parameters ΔH, ΔS and ΔG were calculated with temperatures ranging from 20 to 45 °C to evaluate the complexation process. The activity of the inclusion complex was evaluated on IgE-mediated allergic response in rat basophilic leukemia (RBL-2H3) cells by monitoring key allergic mediators. The results revealed that compared with free thymoquinone, the inclusion complex more strongly inhibited the release of histamine, tumor necrosis factor-α, and interleukin-4, and was not cytotoxic at the tested thymoquinone concentrations (0.125-4 µg/mL) indicating the inclusion complex possibly had better antiallergic effects. Our finding suggested that the inclusion complex achieved prolonged action and reduced side-effect of thymoquinone.


Subject(s)
2-Hydroxypropyl-beta-cyclodextrin/administration & dosage , Anti-Allergic Agents/administration & dosage , Benzoquinones/administration & dosage , Drug Delivery Systems , Animals , Anti-Allergic Agents/chemistry , Benzoquinones/chemistry , Cell Line, Tumor , Drug Liberation , Gastric Juice/chemistry , Histamine/metabolism , Interleukin-4/metabolism , Intestinal Secretions/chemistry , Rats , Tumor Necrosis Factor-alpha/metabolism
13.
Nanomaterials (Basel) ; 8(9)2018 Sep 05.
Article in English | MEDLINE | ID: mdl-30189654

ABSTRACT

The preparation of activated carbon using palm kernel shells as the precursor (PKSAC) was successfully accomplished after the parametric optimization of the carbonization temperature, carbonization holding time, and the ratio of the activator (H3PO4) to the precursor. Optimization at 500 °C for 2 h of carbonization with 20% H3PO4 resulted in the highest surface area of the activated carbon (C20) of 1169 m² g-1 and, with an average pore size of 27 Å. Subsequently, the preparation of shape-stabilized phase change material (SSPCM-C20) was done by the encapsulation of n-octadecane into the pores of the PKSAC, C20. The field emission scanning electron microscope images and the nitrogen gas adsorption-desorption isotherms show that n-octadecane was successfully encapsulated into the pores of C20. The resulting SSPCM-C20 nano-composite shows good thermal reliability which is chemically and thermally stable and can stand up to 500 melting and freezing cycles. This research work provided a new strategy for the preparation of SSPCM material for thermal energy storage application generated from oil palm waste.

14.
Materials (Basel) ; 11(5)2018 Apr 29.
Article in English | MEDLINE | ID: mdl-29710822

ABSTRACT

Despite its large band gap, ZnO has wide applicability in many fields ranging from gas sensors to solar cells. ZnO was chosen over other materials because of its large exciton binding energy (60 meV) and its stability to high-energy radiation. In this study, ZnO nanorods were deposited on ITO glass via a simple dip coating followed by a hydrothermal growth. The morphological, structural and compositional characteristics of the prepared films were analyzed using X-ray diffractometry (XRD), field emission scanning electron microscopy (FESEM), and ultraviolet-visible spectroscopy (UV-Vis). Photoelectrochemical conversion efficiencies were evaluated via photocurrent measurements under calibrated halogen lamp illumination. Thin film prepared at 120 °C for 4 h of hydrothermal treatment possessed a hexagonal wurtzite structure with the crystallite size of 19.2 nm. The average diameter of the ZnO nanorods was 37.7 nm and the thickness was found to be 2680.2 nm. According to FESEM images, as the hydrothermal growth temperature increases, the nanorod diameter become smaller. Moreover, the thickness of the nanorods increase with the growth time. Therefore, the sample prepared at 120 °C for 4 h displayed an impressive photoresponse by achieving high current density of 0.1944 mA/cm².

15.
Materials (Basel) ; 11(2)2018 Feb 13.
Article in English | MEDLINE | ID: mdl-29438327

ABSTRACT

Carbon in its single entity and various forms has been used in technology and human life for many centuries. Since prehistoric times, carbon-based materials such as graphite, charcoal and carbon black have been used as writing and drawing materials. In the past two and a half decades or so, conjugated carbon nanomaterials, especially carbon nanotubes, fullerenes, activated carbon and graphite have been used as energy materials due to their exclusive properties. Due to their outstanding chemical, mechanical, electrical and thermal properties, carbon nanostructures have recently found application in many diverse areas; including drug delivery, electronics, composite materials, sensors, field emission devices, energy storage and conversion, etc. Following the global energy outlook, it is forecasted that the world energy demand will double by 2050. This calls for a new and efficient means to double the energy supply in order to meet the challenges that forge ahead. Carbon nanomaterials are believed to be appropriate and promising (when used as energy materials) to cushion the threat. Consequently, the amazing properties of these materials and greatest potentials towards greener and environment friendly synthesis methods and industrial scale production of carbon nanostructured materials is undoubtedly necessary and can therefore be glimpsed as the focal point of many researchers in science and technology in the 21st century. This is based on the incredible future that lies ahead with these smart carbon-based materials. This review is determined to give a synopsis of new advances towards their synthesis, properties, and some applications as reported in the existing literatures.

16.
RSC Adv ; 8(41): 23040-23047, 2018 Jun 21.
Article in English | MEDLINE | ID: mdl-35540159

ABSTRACT

In this study, a composite material, manganese oxide/reduced titania nanotubes (Mn2O3/R-TNTs), was synthesized through incorporation of Mn2O3 onto R-TNTs via the reverse pulse electrodeposition technique. The influence of pulse reverse duty cycles on the morphological, structural and electrochemical performance of the surface was studied by varying the applied duty cycle from 10% to 90% for 5 min total on-time at an alternate potential of -0.90 V (E on) and 0.00 V (E off). FESEM analysis revealed the uniform deposition of Mn2O3 on the circumference of the nanotubes. The amount of Mn2O3 loaded onto the R-TNTs increased as a higher duty cycle was applied. Cyclic voltammetry and galvanostatic charge-discharge tests were employed to elucidate the electrochemical properties of all the synthesized samples in 1 M KCl. The specific capacitance per unit area was greatly enhanced upon the incorporation of Mn2O3 onto R-TNTs, but showed a decrease as a high duty cycle was applied. This proved that low amounts of Mn2O3 loading enhanced the facilitation of the active ions for charge storage purposes. The optimized sample, Mn2O3/R-TNTs synthesized at 10% duty cycle, exhibited high specific capacitance of 18.32 mF cm-2 at a current density of 0.1 mA cm-2 obtained from constant current charge-discharge measurements. This revealed that the specific capacitance possessed by Mn2O3/R-TNTs synthesized at 10% duty cycle was 6 times higher than bare R-TNTs.

17.
Nanomaterials (Basel) ; 7(7)2017 Jul 13.
Article in English | MEDLINE | ID: mdl-28703757

ABSTRACT

Herein, a new approach was proposed to produce reduced graphene oxide (rGO) from graphene oxide (GO) using various oil palm wastes: oil palm leaves (OPL), palm kernel shells (PKS) and empty fruit bunches (EFB). The effect of heating temperature on the formation of graphitic carbon and the yield was examined prior to the GO and rGO synthesis. Carbonization of the starting materials was conducted in a furnace under nitrogen gas for 3 h at temperatures ranging from 400 to 900 °C and a constant heating rate of 10 °C/min. The GO was further synthesized from the as-carbonized materials using the 'improved synthesis of graphene oxide' method. Subsequently, the GO was reduced by low-temperature annealing reduction at 300 °C in a furnace under nitrogen gas for 1 h. The IG/ID ratio calculated from the Raman study increases with the increasing of the degree of the graphitization in the order of rGO from oil palm leaves (rGOOPL) < rGO palm kernel shells (rGOPKS) < rGO commercial graphite (rGOCG) < rGO empty fruit bunches (rGOEFB) with the IG/ID values of 1.06, 1.14, 1.16 and 1.20, respectively. The surface area and pore volume analyses of the as-prepared materials were performed using the Brunauer Emmett Teller-Nitrogen (BET-N2) adsorption-desorption isotherms method. The lower BET surface area of 8 and 15 m2 g-1 observed for rGOCG and rGOOPL, respectively could be due to partial restacking of GO layers and locally-blocked pores. Relatively, this lower BET surface area is inconsequential when compared to rGOPKS and rGOEFB, which have a surface area of 114 and 117 m² g-1, respectively.

18.
PLoS One ; 11(1): e0145862, 2016.
Article in English | MEDLINE | ID: mdl-26745623

ABSTRACT

A highly active and stable nano structured Pt/Mg1-xNixO catalysts was developed by a simple co-precipitation method. The obtained Pt/Mg1-xNixO catalyst exhibited cubic structure nanocatalyst with a size of 50-80 nm and realized CH4 and CO2 conversions as high as 98% at 900°C with excellent stability in the dry reforming of methane. The characterization of catalyst was performed using various kinds of analytical techniques including XRD, BET, XRF, TPR-H2, TGA, TEM, FESEM, FT-IR, and XPS analyses. Characterization of spent catalyst further confirms that Pt/Mg1-xNixO catalyst has high coke-resistance for dry reforming. Thus, the catalyst demonstrated in this study, offers a promising catalyst for resolving the dilemma between dispersion and reducibility of supported metal, as well as activity and stability during high temperature reactions.


Subject(s)
Metal Nanoparticles/chemistry , Methane/chemistry , Carbon Dioxide/chemistry , Catalysis , Magnesium/chemistry , Metal Nanoparticles/ultrastructure , Nickel/chemistry , Particle Size , Platinum/chemistry , Spectroscopy, Fourier Transform Infrared , Thermogravimetry
19.
Int J Mol Sci ; 15(11): 20254-65, 2014 Nov 05.
Article in English | MEDLINE | ID: mdl-25380526

ABSTRACT

Multi-walled carbon nanotubes (MWCNTs) were prepared via chemical vapor deposition (CVD) using a series of different catalysts, derived from FeCoNiAl, CoNiAl and FeNiAl layered double hydroxides (LDHs). Catalyst-active particles were obtained by calcination of LDHs at 800 °C for 5 h. Nitrogen and hexane were used as the carrier gas and carbon source respectively, for preparation of MWCNTs using CVD methods at 800 °C. MWCNTs were allowed to grow for 30 min on the catalyst spread on an alumina boat in a quartz tube. The materials were subsequently characterized through X-ray diffraction, Fourier transform infrared spectroscopy, surface area analysis, field emission scanning electron microscopy and transmission electron microscopy. It was determined that size and yield of MWCNTs varied depending on the type of LDH catalyst precursor that is used during synthesis. MWCNTs obtained using CoNiAl-LDH as the catalyst precursor showed smaller diameter and higher yield compared to FeCoNiAl and FeNiAl LDHs.


Subject(s)
Hydroxides/chemistry , Metals/chemistry , Nanotechnology/methods , Nanotubes, Carbon/chemistry , Adsorption , Catalysis , Nanotubes, Carbon/ultrastructure , Porosity , Powders , Spectroscopy, Fourier Transform Infrared , Surface Properties , Temperature , X-Ray Diffraction
20.
J Oleo Sci ; 63(9): 849-55, 2014.
Article in English | MEDLINE | ID: mdl-25099911

ABSTRACT

In the current research work, effect of microwave irradiation energy on the esterification of palm fatty acid distillate (PFAD) to produce PFAD methyl ester / biodiesel was intensively appraised. The PFAD is a by-product from refinery of crude palm oil consisting >85% of free fatty acid (FFA). The esterification reaction process with acid catalyst is needed to convert the FFA into fatty acid methyl ester or known as biodiesel. In this work, fabricated microwave-pulse width modulation (MPWM) reactor with controlled temperature was designed to be capable to increase the PFAD biodiesel production rate. The classical optimization technique was used in order to study the relationship and the optimum condition of variables involved. Consequently, by using MPWM reactor, mixture of methanol-to-PFAD molar ratio of 9:1, 1 wt.% of sulfuric acid catalyst, at 55°C reaction temperature within 15 min reaction time gave 99.5% of FFA conversion. The quality assessment and properties of the product were analyzed according to the American Society for Testing and Materials (ASTM), European (EN) standard methods and all results were in agreement with the standard requirements. It revealed that the use of fabricated MPWM with controlled temperature was significantly affecting the rate of esterification reaction and also increased the production yield of PFAD methyl ester.


Subject(s)
Biofuels , Chemistry, Organic/methods , Esters/chemical synthesis , Fatty Acids, Nonesterified/chemistry , Microwaves , Plant Oils/analysis , Plant Oils/chemistry , Catalysis , Esterification , Palm Oil , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...