Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 2: 208, 2019.
Article in English | MEDLINE | ID: mdl-31240246

ABSTRACT

The transcription factors LAP1, LAP2 and LIP are derived from the Cebpb-mRNA through the use of alternative start codons. High LIP expression has been associated with human cancer and increased cancer incidence in mice. However, how LIP contributes to cellular transformation is poorly understood. Here we present that LIP induces aerobic glycolysis and mitochondrial respiration reminiscent of cancer metabolism. We show that LIP-induced metabolic programming is dependent on the RNA-binding protein LIN28B, a translational regulator of glycolytic and mitochondrial enzymes with known oncogenic function. LIP activates LIN28B through repression of the let-7 microRNA family that targets the Lin28b-mRNA. Transgenic mice overexpressing LIP have reduced levels of let-7 and increased LIN28B expression, which is associated with metabolic reprogramming as shown in primary bone marrow cells, and with hyperplasia in the skin. This study establishes LIP as an inducer of cancer-type metabolic reprogramming and as a regulator of the let-7/LIN28B regulatory circuit.


Subject(s)
CCAAT-Enhancer-Binding Protein-beta/metabolism , MicroRNAs/genetics , Neoplasms/metabolism , Animals , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Codon , Fibroblasts/metabolism , Glycolysis , HEK293 Cells , Humans , Male , Mice , Mice, Knockout , Mice, Transgenic , Mitochondria/metabolism , Oxygen Consumption , Proteome , RNA Interference , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Rats , Signal Transduction
2.
Cell Rep ; 22(2): 497-511, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29320743

ABSTRACT

Cellular metabolism is a tightly controlled process in which the cell adapts fluxes through metabolic pathways in response to changes in nutrient supply. Among the transcription factors that regulate gene expression and thereby cause changes in cellular metabolism is the basic leucine-zipper (bZIP) transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα). Protein lysine acetylation is a key post-translational modification (PTM) that integrates cellular metabolic cues with other physiological processes. Here, we show that C/EBPα is acetylated by the lysine acetyl transferase (KAT) p300 and deacetylated by the lysine deacetylase (KDAC) sirtuin1 (SIRT1). SIRT1 is activated in times of energy demand by high levels of nicotinamide adenine dinucleotide (NAD+) and controls mitochondrial biogenesis and function. A hypoacetylated mutant of C/EBPα induces the transcription of mitochondrial genes and results in increased mitochondrial respiration. Our study identifies C/EBPα as a key mediator of SIRT1-controlled adaption of energy homeostasis to changes in nutrient supply.


Subject(s)
E1A-Associated p300 Protein/genetics , Mitochondria/metabolism , Sirtuin 1/genetics , Acetylation , Animals , E1A-Associated p300 Protein/metabolism , Humans , Sirtuin 1/metabolism
3.
Sci Rep ; 7: 42603, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28198412

ABSTRACT

An important part of the beneficial effects of calorie restriction (CR) on healthspan and lifespan is mediated through regulation of protein synthesis that is under control of the mechanistic target of rapamycin complex 1 (mTORC1). As one of its activities, mTORC1 stimulates translation into the metabolic transcription factor CCAAT/Enhancer Binding Protein ß (C/EBPß) isoform Liver-specific Inhibitory Protein (LIP). Regulation of LIP expression strictly depends on a translation re-initiation event that requires a conserved cis-regulatory upstream open reading frame (uORF) in the C/EBPß-mRNA. We showed before that suppression of LIP in mice, reflecting reduced mTORC1-signaling at the C/EBPß level, results in CR-type of metabolic improvements. Hence, we aim to find possibilities to pharmacologically down-regulate LIP in order to induce CR-mimetic effects. We engineered a luciferase-based cellular reporter system that acts as a surrogate for C/EBPß-mRNA translation, emulating uORF-dependent C/EBPß-LIP expression under different translational conditions. By using the reporter system in a high-throughput screening (HTS) strategy we identified drugs that reduce LIP. The drug Adefovir Dipivoxil passed all counter assays and increases fatty acid ß-oxidation in a hepatoma cell line in a LIP-dependent manner. Therefore, these drugs that suppress translation into LIP potentially exhibit CR-mimetic properties.


Subject(s)
CCAAT-Enhancer-Binding Protein-beta/genetics , Caloric Restriction , Drug Discovery , Protein Biosynthesis/drug effects , CCAAT-Enhancer-Binding Protein-beta/metabolism , Cell Line , Drug Discovery/methods , Gene Expression , Gene Expression Regulation/drug effects , Gene Order , Genes, Reporter , Genetic Vectors/genetics , High-Throughput Screening Assays , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results
4.
Nucleic Acids Res ; 44(9): 4134-46, 2016 05 19.
Article in English | MEDLINE | ID: mdl-26762974

ABSTRACT

Mutations in the Shwachman-Bodian-Diamond Syndrome (SBDS) gene cause Shwachman-Diamond Syndrome (SDS), a rare congenital disease characterized by bone marrow failure with neutropenia, exocrine pancreatic dysfunction and skeletal abnormalities. The SBDS protein is important for ribosome maturation and therefore SDS belongs to the ribosomopathies. It is unknown, however, if loss of SBDS functionality affects the translation of specific mRNAs and whether this could play a role in the development of the clinical features of SDS. Here, we report that translation of the C/EBPα and -ß mRNAs, that are indispensible regulators of granulocytic differentiation, is altered by SBDS mutations or knockdown. We show that SBDS function is specifically required for efficient translation re-initiation into the protein isoforms C/EBPα-p30 and C/EBPß-LIP, which is controlled by a single cis-regulatory upstream open reading frame (uORF) in the 5' untranslated regions (5' UTRs) of both mRNAs. Furthermore, we show that as a consequence of the C/EBPα and -ß deregulation the expression of MYC is decreased with associated reduction in proliferation, suggesting that failure of progenitor proliferation contributes to the haematological phenotype of SDS. Therefore, our study provides the first indication that disturbance of specific translation by loss of SBDS function may contribute to the development of the SDS phenotype.


Subject(s)
Bone Marrow Diseases/metabolism , CCAAT-Enhancer-Binding Protein-beta/genetics , CCAAT-Enhancer-Binding Proteins/genetics , Exocrine Pancreatic Insufficiency/metabolism , Lipomatosis/metabolism , Proteins/physiology , RNA, Messenger/genetics , 5' Untranslated Regions , Bone Marrow Diseases/genetics , CCAAT-Enhancer-Binding Protein-beta/metabolism , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Differentiation , Cell Line, Tumor , Exocrine Pancreatic Insufficiency/genetics , Gene Expression , Gene Expression Regulation , Humans , Lipomatosis/genetics , Neutrophils/physiology , Peptide Chain Initiation, Translational , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , RNA, Messenger/metabolism , Shwachman-Diamond Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...