Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 1375, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38228643

ABSTRACT

Polymeric based composites have gained considerable attention as potential candidates for advanced radiation shielding applications due to their unique combination of high-density, radiation attenuation properties and improved mechanical strength. This study focuses on the comprehensive characterisation of polymeric based composites for radiation shielding applications. The objective of this study was to evaluate the physical, mechanical and microstructural properties of tungsten carbide-based epoxy resin and tungsten carbide cobalt-based epoxy resin for its efficiency in shielding against gamma-rays ranging from 0.6 up to 1.33 MeV. Polymeric composites with different weight percentages of epoxy resin (40 wt%, 35 wt%, 30 wt%, 25 wt%, 20 wt%, 15 wt% and 10 wt%) were fabricated, investigated and compared to conventional lead shield. The attenuation of the composites was performed using NaI (Tl) gamma-ray spectrometer to investigate the linear and mass attenuation coefficients, half value layer, and mean free path. High filler loadings into epoxy resin matrix (90% filler/10% epoxy) exhibited excellent gamma shielding properties. Mechanical properties, such as hardness were examined to assess the structural integrity and durability of the composites under various conditions. The fabricated composites showed a good resistance, the maximum hardness was attributed to composites with small thickness. The high loading of fillers in the epoxy matrix improved the microhardness of the composites. The distribution of the filler powder within the epoxy matrix was investigated using FESEM/EDX. The results revealed the successful incorporation of tungsten carbide and cobalt particles into the polymer matrix, leading to increased composite density and enhanced radiation attenuation. The unique combination of high-density, radiation attenuation, and improved mechanical properties positions polymeric based composites as promising candidates for radiation protection field.

2.
Insights Imaging ; 13(1): 22, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-35124733

ABSTRACT

Radiomics analysis quantifies the interpolation of multiple and invisible molecular features present in diagnostic and therapeutic images. Implementation of 18-fluorine-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) radiomics captures various disorders in non-invasive and high-throughput manner. 18F-FDG PET/CT accurately identifies the metabolic and anatomical changes during cancer progression. Therefore, the application of 18F-FDG PET/CT in the field of oncology is well established. Clinical application of 18F-FDG PET/CT radiomics in lung infection and inflammation is also an emerging field. Combination of bioinformatics approaches or textual analysis allows radiomics to extract additional information to predict cell biology at the micro-level. However, radiomics texture analysis is affected by several factors associated with image acquisition and processing. At present, researchers are working on mitigating these interrupters and developing standardised workflow for texture biomarker establishment. This review article focuses on the application of 18F-FDG PET/CT in detecting lung diseases specifically on cancer, infection and inflammation. An overview of different approaches and challenges encountered on standardisation of 18F-FDG PET/CT technique has also been highlighted. The review article provides insights about radiomics standardisation and application of 18F-FDG PET/CT in lung disease management.

4.
Materials (Basel) ; 15(3)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35160822

ABSTRACT

With recent advances in nanotechnology, various nanomaterials have been used as drug carriers in molecular imaging for the treatment of cancer. The unique physiochemical properties and biocompatibility of gold nanoparticles have developed a breakthrough in molecular imaging, which allows exploration of gold nanoparticles in drug delivery for diagnostic purpose. The conventional gold nanoparticles synthetisation methods have limitations with chemical contaminations during the synthesisation process and the use of higher energy. Thus, various innovative approaches in gold nanoparticles synthetisation are under development. Recently, studies have been focused on the development of eco-friendly, non-toxic, cost-effective and simple gold nanoparticle synthesisation. The pulsed laser ablation in liquid (PLAL) technique is a versatile synthetic and convincing technique due to its high efficiency, eco-friendly and facile method to produce gold nanoparticle. Therefore, this study aimed to review the eco-friendly gold nanoparticle synthesisation method via the PLAL method and to characterise the gold nanoparticles properties for molecular imaging. This review paper provides new insight to understand the PLAL technique in producing gold nanoparticles and the PLAL parameters that affect gold nanoparticle properties to meet the desired needs in molecular imaging.

5.
Sensors (Basel) ; 21(19)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34640698

ABSTRACT

Optometrists, ophthalmologists, orthoptists, and other trained medical professionals use fundus photography to monitor the progression of certain eye conditions or diseases. Segmentation of the vessel tree is an essential process of retinal analysis. In this paper, an interactive blood vessel segmentation from retinal fundus image based on Canny edge detection is proposed. Semi-automated segmentation of specific vessels can be done by simply moving the cursor across a particular vessel. The pre-processing stage includes the green color channel extraction, applying Contrast Limited Adaptive Histogram Equalization (CLAHE), and retinal outline removal. After that, the edge detection techniques, which are based on the Canny algorithm, will be applied. The vessels will be selected interactively on the developed graphical user interface (GUI). The program will draw out the vessel edges. After that, those vessel edges will be segmented to bring focus on its details or detect the abnormal vessel. This proposed approach is useful because different edge detection parameter settings can be applied to the same image to highlight particular vessels for analysis or presentation.


Subject(s)
Image Processing, Computer-Assisted , Retinal Vessels , Algorithms , Diagnostic Techniques, Ophthalmological , Fundus Oculi , Retinal Vessels/diagnostic imaging
6.
Phys Med ; 78: 48-57, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32942196

ABSTRACT

PURPOSE: The main objective of this study was to evaluate the efficacy of tungsten carbide as new lead-free radiation shielding material in nuclear medicine by evaluating the attenuation properties. MATERIALS AND METHODS: The elemental composition of tungsten carbide was analysed using Field-Emission Scanning Electron Microscopy (FESEM) with energy dispersive X-ray (EDX). The purity of tungsten carbide was 99.9%, APS: 40-50 µm. Three discs of tungsten carbide was fabricated with thickness of 0.1 cm, 0.5 cm and 1.0 cm. Three lead discs with similar thickness were used to compare the attenuation properties with tungsten carbide discs. Energy calibration of gamma spectroscopy was performed by using 123I, 133Ba, 152Eu, and 137Cs. Gamma radiation from these sources were irradiated on both materials at energies ranging from 0.160 MeV to 0.779 MeV. The experimental attenuation coefficients of lead and tungsten carbide were compared with theoretical attenuation coefficients of both materials from NIST database. The half value layer and mean free path of both materials were also evaluated in this study. RESULTS: This study found that the peaks obtained from gamma spectroscopy have linear relationship with all energies used in this study. The relative differences between the measured and theoretical mass attenuation coefficients are within 0.19-5.11% for both materials. Tungsten carbide has low half value layer and mean free path compared to lead for all thickness at different energies. CONCLUSION: This study shows that tungsten carbide has high potential to replace lead as new lead-free radiation shielding material in nuclear medicine.


Subject(s)
Nuclear Medicine , Radiation Protection , Gamma Rays , Tungsten , X-Rays
7.
J Xray Sci Technol ; 21(3): 335-45, 2013.
Article in English | MEDLINE | ID: mdl-24004864

ABSTRACT

Experiments were performed to evaluate the energy-discriminative performance of a spectral (multi-energy) micro-CT system. The system, designed by MARS (Medipix All Resolution System) Bio-Imaging Ltd. (Christchurch, New Zealand), employs a photon-counting energy-discriminative detector technology developed by CERN (European Organization for Nuclear Research). We used the K-edge attenuation characteristics of some known materials to calibrate the detector's photon energy discrimination. For tomographic analysis, we used the compressed sensing (CS) based ordered-subset simultaneous algebraic reconstruction techniques (OS-SART) to reconstruct sample images, which is effective to reduce noise and suppress artifacts. Unlike conventional CT, the principal component analysis (PCA) method can be applied to extract and quantify additional attenuation information from a spectral CT dataset. Our results show that the spectral CT has a good energy-discriminative performance and provides more attenuation information than the conventional CT.


Subject(s)
Phantoms, Imaging , X-Ray Microtomography/instrumentation , X-Ray Microtomography/methods , Algorithms , Models, Biological , Principal Component Analysis
8.
Med Phys ; 39(11): 6847-57, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23127077

ABSTRACT

PURPOSE: To determine the potential of spectral computed tomography (CT) with Medipix3 for quantifying fat, calcium, and iron in soft tissues within small animal models and surgical specimens of diseases such as fatty liver (metabolic syndrome) and unstable atherosclerosis. METHODS: The spectroscopic method was applied to tomographic data acquired using a micro-CT system incorporating a Medipix3 detector array with silicon sensor layer and microfocus x-ray tube operating at 50 kVp. A 10 mm diameter perspex phantom containing a fat surrogate (sunflower oil) and aqueous solutions of ferric nitrate, calcium chloride, and iodine was imaged with multiple energy bins. The authors used the spectroscopic characteristics of the CT number to establish a basis for the decomposition of soft tissue components. The potential of the method of constrained least squares for quantifying different sets of materials was evaluated in terms of information entropy and degrees of freedom, with and without the use of a volume conservation constraint. The measurement performance was evaluated quantitatively using atheroma and mouse equivalent phantoms. Finally the decomposition method was assessed qualitatively using a euthanized mouse and an excised human atherosclerotic plaque. RESULTS: Spectral CT measurements of a phantom containing tissue surrogates confirmed the ability to distinguish these materials by the spectroscopic characteristics of their CT number. The assessment of performance potential in terms of information entropy and degrees of freedom indicated that certain sets of up to three materials could be decomposed by the method of constrained least squares. However, there was insufficient information within the data set to distinguish calcium from iron within soft tissues. The quantification of calcium concentration and fat mass fraction within atheroma and mouse equivalent phantoms by spectral CT correlated well with the nominal values (R(2) = 0.990 and R(2) = 0.985, respectively). In the euthanized mouse and excised human atherosclerotic plaque, regions of calcium and fat were appropriately decomposed according to their spectroscopic characteristics. CONCLUSIONS: Spectral CT, using the Medipix3 detector and silicon sensor layer, can quantify certain sets of up to three materials using the proposed method of constrained least squares. The system has some ability to independently distinguish calcium, fat, and water, and these have been quantified within phantom equivalents of fatty liver and atheroma. In this configuration, spectral CT cannot distinguish iron from calcium within soft tissues.


Subject(s)
Tomography, X-Ray Computed/methods , Adipose Tissue/diagnostic imaging , Animals , Calibration , Humans , Liver/diagnostic imaging , Mice , Phantoms, Imaging , Plaque, Atherosclerotic/diagnostic imaging
9.
IEEE Trans Biomed Eng ; 59(6): 1711-9, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22481806

ABSTRACT

X-ray micro-CT is an important imaging tool for biomedical researchers. Our group has recently proposed a hybrid "true-color" micro-CT system to improve contrast resolution with lower system cost and radiation dose. The system incorporates an energy-resolved photon-counting true-color detector into a conventional micro-CT configuration, and can be used for material decomposition. In this paper, we demonstrate an interior color-CT image reconstruction algorithm developed for this hybrid true-color micro-CT system. A compressive sensing-based statistical interior tomography method is employed to reconstruct each channel in the local spectral imaging chain, where the reconstructed global gray-scale image from the conventional imaging chain served as the initial guess. Principal component analysis was used to map the spectral reconstructions into the color space. The proposed algorithm was evaluated by numerical simulations, physical phantom experiments, and animal studies. The results confirm the merits of the proposed algorithm, and demonstrate the feasibility of the hybrid true-color micro-CT system. Additionally, a "color diffusion" phenomenon was observed whereby high-quality true-color images are produced not only inside the region of interest, but also in neighboring regions. It appears harnessing that this phenomenon could potentially reduce the color detector size for a given ROI, further reducing system cost and radiation dose.


Subject(s)
Algorithms , Colorimetry/methods , Colorimetry/veterinary , Radiographic Image Enhancement/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Tomography, X-Ray Computed/veterinary , Animals , Colorimetry/instrumentation , Humans , Mice , Miniaturization , Phantoms, Imaging , Reproducibility of Results , Sensitivity and Specificity , Tomography, X-Ray Computed/instrumentation
10.
Eur Radiol ; 22(5): 1008-13, 2012 May.
Article in English | MEDLINE | ID: mdl-22134894

ABSTRACT

OBJECTIVE: Computed tomography (CT) uses radiographical density to depict different materials; although different elements have different absorption fingerprints across the range of diagnostic X-ray energies, this spectral absorption information is lost in conventional CT. The recent development of dual energy CT (DECT) allows extraction of this information to a useful but limited extent. However, the advent of new photon counting chips that have energy resolution capabilities has put multi-energy or spectral CT (SCT) on the clinical horizon. METHODS: This paper uses a prototype SCT system to demonstrate how CT density measurements vary with kilovoltage. RESULTS: While radiologists learn about linear attenuation curves during radiology training, they do not usually need a detailed understanding of this phenomenon in their clinical practice. However SCT requires a paradigm shift in how radiologists think about CT density. CONCLUSION: Because radiologists are already familiar with the Hounsfield Unit (HU), it is proposed that a modified HU be used that includes the mean energy used to obtain the image, as a conceptual bridge between conventional CT and SCT. A suggested format would be: HU(keV). KEY POINTS: • Spectral computed tomography uses K-edge and slope effects to identify element signatures. • New visualisation tools will be required to efficiently display spectral CT information. • This paper demonstrates HU variation with keV using the Medipix3 chip. • HU ( keV ) is a suggested format when stating spectral HU measurements.


Subject(s)
Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/instrumentation , Tomography, X-Ray Computed/methods , Equipment Design , Equipment Failure Analysis , Humans , Phantoms, Imaging , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...