Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 196: 115677, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37862842

ABSTRACT

The main aim of this study was to assess the presence of microplastics in the water and sediments of the Surakarta city river basin in Indonesia. In order to accurately reflect the river basin, a deliberate selection process was employed to choose three separate sampling locations and twelve sampling points. The results of the study revealed that fragments and fibers were the primary types of microplastics seen in both water and sediment samples. Furthermore, a considerable percentage of microplastics, comprising 53.8 % of the total, had dimensions below 1 mm. Moreover, the prevailing hues identified in the water samples were blue and black, comprising 45.1 % of the overall composition. In contrast, same color categories accounted for 23.3 % of the microplastics found in the soil samples. The analysis of microplastic polymers was carried out utilizing ATR-FTIR spectroscopy, which yielded the identification of various types including polystyrene, silicone polymer, polyester, and polyamide.


Subject(s)
Microplastics , Water Pollutants, Chemical , Microplastics/analysis , Plastics/analysis , Water/analysis , Rivers , Indonesia , Geologic Sediments , Water Pollutants, Chemical/analysis , Environmental Monitoring
2.
Diagnostics (Basel) ; 13(16)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37627876

ABSTRACT

One of the most common and deadly diseases in the world is lung cancer. Only early identification of lung cancer can increase a patient's probability of survival. A frequently used modality for the screening and diagnosis of lung cancer is computed tomography (CT) imaging, which provides a detailed scan of the lung. In line with the advancement of computer-assisted systems, deep learning techniques have been extensively explored to help in interpreting the CT images for lung cancer identification. Hence, the goal of this review is to provide a detailed review of the deep learning techniques that were developed for screening and diagnosing lung cancer. This review covers an overview of deep learning (DL) techniques, the suggested DL techniques for lung cancer applications, and the novelties of the reviewed methods. This review focuses on two main methodologies of deep learning in screening and diagnosing lung cancer, which are classification and segmentation methodologies. The advantages and shortcomings of current deep learning models will also be discussed. The resultant analysis demonstrates that there is a significant potential for deep learning methods to provide precise and effective computer-assisted lung cancer screening and diagnosis using CT scans. At the end of this review, a list of potential future works regarding improving the application of deep learning is provided to spearhead the advancement of computer-assisted lung cancer diagnosis systems.

3.
Sensors (Basel) ; 22(12)2022 Jun 19.
Article in English | MEDLINE | ID: mdl-35746417

ABSTRACT

Understanding a person's attitude or sentiment from their facial expressions has long been a straightforward task for humans. Numerous methods and techniques have been used to classify and interpret human emotions that are commonly communicated through facial expressions, with either macro- or micro-expressions. However, performing this task using computer-based techniques or algorithms has been proven to be extremely difficult, whereby it is a time-consuming task to annotate it manually. Compared to macro-expressions, micro-expressions manifest the real emotional cues of a human, which they try to suppress and hide. Different methods and algorithms for recognizing emotions using micro-expressions are examined in this research, and the results are presented in a comparative approach. The proposed technique is based on a multi-scale deep learning approach that aims to extract facial cues of various subjects under various conditions. Then, two popular multi-scale approaches are explored, Spatial Pyramid Pooling (SPP) and Atrous Spatial Pyramid Pooling (ASPP), which are then optimized to suit the purpose of emotion recognition using micro-expression cues. There are four new architectures introduced in this paper based on multi-layer multi-scale convolutional networks using both direct and waterfall network flows. The experimental results show that the ASPP module with waterfall network flow, which we coined as WASPP-Net, outperforms the state-of-the-art benchmark techniques with an accuracy of 80.5%. For future work, a high-resolution approach to multi-scale approaches can be explored to further improve the recognition performance.


Subject(s)
Image Processing, Computer-Assisted , Neural Networks, Computer , Algorithms , Emotions , Facial Expression , Humans , Image Processing, Computer-Assisted/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...