Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Publication year range
1.
Chinese Journal of Biotechnology ; (12): 1175-1187, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-970431

ABSTRACT

In order to determine the changes of bacterial community structure and function in the early, middle and late stage of aerobic composting of chicken manure, high-throughput sequencing and bioinformatics methods were used to determine and analyze the 16S rRNA sequence of samples at different stages of composting. Wayne analysis showed that most of the bacterial OTUs in the three composting stages were the same, and only about 10% of the operational taxonomic units (OTUs) showed stage specificity. The diversity indexes including Ace, Chao1 and Simpson showed a trend of increasing at first, followed by decreasing. However, there was no significant difference among different composting stages (P < 0.05). The dominant bacteria groups in three composting stages were analyzed at the phylum and genus levels. The dominant bacteria phyla at three composting stages were the same, but the abundances were different. LEfSe (line discriminant analysis (LDA) effect size) method was used to analyze the bacterial biological markers with statistical differences among three stages of composting. From the phylum to genus level, there were 49 markers with significant differences among different groups. The markers included 12 species, 13 genera, 12 families, 8 orders, 1 boundary, and 1 phylum. The most biomarkers were detected at early stage while the least biomarkers were detected at late stage. The microbial diversity was analyzed at the functional pathway level. The function diversity was the highest in the early stage of composting. Following the composting, the microbial function was enriched relatively while the diversity decreased. This study provides theoretical support and technical guidance for the regulation of livestock manure aerobic composting process.


Subject(s)
Animals , Manure/microbiology , Chickens/genetics , Composting , RNA, Ribosomal, 16S/genetics , Soil , Bacteria/genetics
2.
J Environ Manage ; 267: 110456, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32421660

ABSTRACT

To investigate how the aquatic bacterial community of a stratified reservoir drives the evolution of water parameters, the microbial community structure and network characteristics of bacteria in a stratified reservoir were investigated using Illumina MiSeq sequencing technology. A total of 42 phyla and 689 distinct genera were identified, which showed significant seasonal variation. Additionally, stratified variations in the bacterial community strongly reflected the vertical gradient and seasonal changes in water temperature, dissolved oxygen, and nutrition concentration. Furthermore, principal coordinate analysis indicated that most microorganisms were likely influenced by changes in water stratification conditions, exhibiting significant differences during the stratification period and mixing period based on Adonis, MRPP, and Anosim. Compared to the stratification period, 123 enhanced operational taxonomic units (OTUs; 29%) and 226 depleted OTUs (52%) were identified during the mixing period. Linear discriminant analysis effect size results showed that 15 major genera were enriched in the mixing period and 10 major genera were enriched in the stratification period. Importantly, network analysis revealed that the keystone species belonged to hgcI_clade, CL500-29, Acidibacter, Paucimonas, Flavobacterium, Prochlorothrix, Xanthomonadales, Chloroflexia, Burkholderiales, OPB56, KI89A_clade, Synechococcus, Caulobacter or were unclassified. Redundancy analysis showed that temperature, dissolved oxygen, pH, chlorophyll-α, total phosphorus, nitrate, and ammonia were important factors influencing the water bacterial community and function composition, which were consistent with the results of the Mantel test analysis. Furthermore, random forest analysis showed that temperature, dissolved oxygen, ammonia, and total dissolved phosphorous were the most important variables predicting water bacterial community and function community α- and ß-diversity (P < 0.05). Overall, these results provide insight into the interactions between the microbial community and water quality evolution mechanism in Zhoucun reservoir.


Subject(s)
Drinking Water , Microbiota , Bacteria , Water Microbiology , Water Quality
3.
Chinese Journal of Biotechnology ; (12): 2644-2656, 2020.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-878518

ABSTRACT

Continuous planting of muskmelon and excessive application of chemical fertilizers have caused a series of problems, such as imbalance of the soil micro-ecological environment, serious soil-borne diseases and yield loss. Application of Bacillus subtilis agent is an important way to improve soil micro-ecological environment, prevent soil-borne diseases, and promote plant growth. In this study, B. subtilis was used as experimental agent to analyze the effects of different application methods on the soil microbial diversity and growth of muskmelon in greenhouse. The number of culturable microorganisms in soil was measured by dilution-plate method. The diversity of soil uncultivated microorganisms was determined by Illumina Miseq sequencing technology. The yield of muskmelon was measured by weighing method. The number of culturable bacteria in the root irrigation, hole application and dipping root application groups was higher than that of the control in different muskmelon growth stages, but there was no significant difference among the three different application methods. The number of soil fungi from B. subtilis agent treatment groups in flowering stage was significantly lower in comparison to the control group. However, B. subtilis agent treatment did not cause significant difference on soil fungi number at the fruiting and pulling stage. Diversity analysis of uncultured microorganisms showed that the Shannon index values of bacteria were higher and Simpson index values were lower respectively in the three B. subtilis treatment groups than that in the control. Moreover, the dipping root treatment produced the lowest Shannon index value and the highest Simpson index value of fungi. NMDS and cluster analysis showed that B. subtilis agents dipping root treatment significantly affected the bacterial and fungal flora, both of which were clustered into one independent branch. The application of B. subtilis agents, especially dipping root treatment, significantly decreased the abundance of Bacteroidetes, increased the abundance of Actinobacteria and Acidobacteria. The B. subtilis agent treatment didn't produce significant effect on the diversity of fungal flora except Chytridiomycota. The height, stem diameter and leaf area of muskmelon increased by applying B. subtilis agents, and dipping root treatment produced the most significant effect. As a new type of environmental protection fertilizer, B. subtilis agent can increase the number of soil culturable microorganisms, improve soil microbial diversity, and promote growth and yield. This study would provide a scientific basis for the rational application of B. subtilis.


Subject(s)
Bacillus subtilis/genetics , Fertilizers , Fungi , Soil , Soil Microbiology
4.
J Environ Sci (China) ; 25(10): 1972-9, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-24494483

ABSTRACT

Starch/polyvinyl alcohol (PVA) blended materials for using as a solid carbon source (SCS) were prepared by blending PVA and gelatinized starch in an aqueous solution system, in which PVA served as framework material and starch as carbon source. The optimization of starch content and temperature effects were investigated. It was indicated that higher denitrification efficiency could be achieved with more starch in the materials. The average specific denitrification rates were 0.93, 0.66, 0.37 and 0.36 mg/(g x day) corresponding to starch content of 70%, 60%, 40% and 30% respectively at 37 degrees C. The denitrification rates increased when operating temperature was raised from 23 degrees C to 30 degrees C and then 37 degrees C. The mechanism of carbon release was analyzed incorporating the experimental results of abiotic release in deionized water. The organic carbon was mainly hydrolyzed by microbes, and the biological release efficiencies were at the range of 89.2% to 96.0%. A long-term experiment with a continuous flow reactor with SCS material containing 70% starch was conducted to gain some experience for practical application. When the influent nitrate concentration was in the range of 35.2 to 39.1 mg/L, hydraulic retention time of 4 hr, and operating temperature of 30 degrees C, a nitrogen removal efficiency up to 94.6% and denitrification rate of 0.217 kg/(m3 x day) was achieved. The starch-based materials developed in this study can be used as a solid carbon source for tertiary nitrogen removal from secondary effluent.


Subject(s)
Carbon/chemistry , Nitrogen/chemistry , Polyvinyl Alcohol/chemistry , Denitrification , Starch/chemistry , Time Factors , Waste Disposal, Fluid/methods , Water Pollutants, Chemical , Water Purification
5.
Microbiology ; (12)1992.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-594851

ABSTRACT

A salt-tolerant strain GYW capable of decolorating azo dye was isolated and identified as Halo-monas sp.by 16S rDNA.The result showed that the decolorizing salt-tolerant bacteria could survive above the 10% salt concentration and it could decolorize many dyes.The strain had a high decolorizing rate on acid red GR under the condition of pH 7.5,anaerobic 30?C and 10% NaCl.The ion of Cl- strong inhibited the decolorization of acid red GR,and the ion of SO42- affected little on the decolorization,and the lycine addi-tion with the optimal concentration of 200 mg/L could enhanced the decolorization rate under high NaCl concentration.

SELECTION OF CITATIONS
SEARCH DETAIL
...