Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 11(9)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34578560

ABSTRACT

A computational approach is used on MOF materials to predict the structures showing the best performances for I2 adsorption as a function of the functionalization, the pore size, the presence of the compensating ions, and the flexibility on which to base future improvements in selected materials in view of their targeted application. Such an approach can be generalized for the adsorption of other gases or vapors. Following the results from the simulations, it was evidenced that the maximum capacity of I2 adsorption by MOF solids with longer organic moieties and larger pores could exceed that of previously tested materials. In particular, the best retention performance was evidenced for MIL-100-BTB. However, if the capacity to retain traces of gaseous I2 on the surface is considered, MIL-101-2CH3, MIL-101-2CF3, and UiO-66-2CH3 appear more promising. Furthermore, the impact of temperature is also investigated.

2.
Nanomaterials (Basel) ; 11(9)2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34578670

ABSTRACT

The present paper examines the impact that the nanotube morphology and organic or inorganic intercalated species may have on the cesium sorption by layered vanadium oxides prepared with the use of hexadecylamine as a structure-directing agent. The hybrid material represented by a chemical formula of (V2O5)(VO2)1.03(C16H36N)1.46(H2O)x was achieved through accelerated microwave-assisted synthesis carefully optimized to ensure the best compromise between the scroll-like morphology and the hydrophobic character. To enhance its dispersibility in water, this sample was subsequently modified by progressive replacement of the C16H36N+ units by NH4+ cations. The final materials represented a stacking of lamellar sheets with a worse scroll-like morphology. Both the optimization procedure and the template removal were monitored on the basis of scanning and transmission electronic microscopy, X-ray diffraction, infra-red spectroscopy, inductively coupled plasma-optical emission spectrometry, X-ray photoelectron spectroscopy, and elemental analysis, supplemented by adequate simulations methods providing the reference IR spectra and XRD patterns for comparison or the textural parameters of the samples. The comparison of the cesium sorption from either a 4:1 ethanol-water mixture or aqueous solutions pointed toward the solubility of intercalated cations in the bulk solution as the main factor limiting their displacement from the interlayer space by the oncoming cesium ones. The sample obtained after 70% exchange with NH4+ exhibited a maximum sorption capacity of 1.4 mmol g-1 from CsNO3 aqueous solutions and its retention efficiency remained significant from low-concentration Cs solutions in river or sea water.

3.
Molecules ; 24(5)2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30866556

ABSTRACT

The present report deals with low-temperature thermochemical storage for space heating, which is based on the principles of vapour adsorption onto solid adsorbents. With the aim of obtaining comprehensive information on the rationalized selection of adsorbents for heat storage in open sorption systems operating in the moist-air flow mode, various materials reported up to now in the literature are reviewed by referring strictly to the possible mechanisms of water vapour adsorption, as well as practical aspects of their preparation or their application under particular operating conditions. It seems reasonable to suggest that, on the basis of the current state-of-the-art, the adsorption phenomenon may be rather exploited in the auxiliary heating systems, which provide additional heat during winter's coldest days.


Subject(s)
Heating , Solar Energy , Adsorption , Cold Temperature , Porosity , Seasons
4.
J Hazard Mater ; 368: 661-669, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30731366

ABSTRACT

An alternative microwave-assisted hydrothermal route for the preparation of manganate nanoflowers under basic conditions has been proposed in view of potential uses in selective retention of strontium from multicomponent aqueous streams. Based on the combination of such characterization techniques as Scanning and Transmission Electronic Microscopy, X-ray photoelectron spectroscopy, and X-ray Diffraction, as well as taking advantage of the computer-aided structure simulation, homogeneous nanoflower morphology possessing a layered structure and K+ compensating cations was evidenced as corresponding to the KMn4O8 chemical formula. The nanoflower sample was subsequently tested for the selective adsorption of strontium and cesium by measuring the individual adsorption isotherms from single-solute and multicomponent aqueous solutions. The material appeared selective towards strontium against cesium even in multicomponent solutions provided that the concentration of calcium remained low. This difference in the retention selectivity was rationalized based on the Density Functional Theory (DFT) calculations of the energy of adsorption and direct calorimetry measurements of the enthalpy of displacement for the individual cations.

5.
J Colloid Interface Sci ; 535: 182-194, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30293044

ABSTRACT

This study analyzes the effect of the addition of acetate, citrate, and nitrilotriacetate anions on the retention of Co(II) cations by the γ-alumina surface in view of the preparation of alumina supported cobalt catalysts. The emphasis was placed on the way the Co(II) species attach to the solid surface when adsorbed from aqueous solutions under the unadjusted pH condition. The individual adsorption isotherms onto γ-Al2O3 support for cobalt and a given ligand were determined by following the solution depletion method in single-solute and bi-solute systems. These adsorption data were supplemented by the results of potentiometric titrations. In the case of bi-solute systems, the adsorption procedures allowed either co-impregnation of γ-alumina with equimolar solutions of cobalt and ligand salts or pre-impregnation of γ-alumina with the ligand anions and the subsequent adsorption of cobalt. Changes in the pH of the equilibrium solid-liquid suspension were also monitored along the adsorption isotherms. The adsorption of Co(II) onto γ-Al2O3 in the presence of acetate and nitrilotriacetate led to the formation of the type A (i.e., solid-metal-ligand) ternary complexes. The use of citrate anions together with Co(II) cations was shown to improve the impregnation process through the formation of ternary complexes of type B (i.e., solid-ligand-metal). The comparison with a system containing tricarballylate anions allowed concluding that the presence of the hydroxyl group in the citrate anion enhanced its affinity for the alumina surface by contributing to the inner-sphere character of its surface-bound complexes.

6.
J Hazard Mater ; 344: 511-530, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29100131

ABSTRACT

Liquid wastes containing non-ferrous heavy metal ions and some radionuclides, 137Cs and 90Sr in particular, represent one of the most dangerous sources of environmental contamination. The remediation of wastewater containing such pollutants continue to be among the biggest challenges of Sustainable Development and Environmental Safety. Sorption-based technologies have proven their efficiency also in reducing the radionuclide content in aqueous streams to low-level residual activity, with the concomitant decrease in the amount of ultimate solid waste generated. Although sorption of cesium and strontium by resins, clays, and zeolites has been investigated intensively and even used in real applications, there is still considerable scope for improvement in terms of retention capacity and selectivity. Recent progress in design and preparation of nanostructured inorganic materials has attracted growing interest based on the potential for improving the retention performance when coupling such functionalities as ion exchange capacity, structural flexibility that may result in steric retention effects, as well as the propensity to interact specifically with the target metal cations. Titanate, vanadate, and tungsten based materials, manganese oxides, hexacyanoferrates, metal sulfides, ammonium molybdophosphates, or hydroxyapatite, characterized by various structures and morphologies, are reviewed with the emphasis being put on synthesis and shaping of such materials, their structure in relationship with the capacity and selectivity of trapping cesium and strontium from either single or multi-component aqueous solutions, as well as the possible retention mechanism. The potential candidates for remediation uses are selected with regard to their sorption capacity and distribution coefficient towards target cations, and also the pH window for an optimum cation capture.

7.
Int J Mol Sci ; 17(2): 223, 2016 Feb 06.
Article in English | MEDLINE | ID: mdl-26861309

ABSTRACT

Surface activity and micelle formation of alkylguanidinium chlorides containing 10, 12, 14 and 16 carbon atoms in the hydrophobic tail were studied by combining conductivity and surface tension measurements with isothermal titration calorimetry. The purity of the resulting surfactants, their temperatures of Cr→LC and LC→I transitions, as well as their propensity of forming birefringent phases, were assessed based on the results of ¹H and (13)C NMR, differential scanning calorimetry (DSC), and polarizing microscopy studies. Whenever possible, the resulting values of Krafft temperature (TK), critical micelle concentration (CMC), minimum surface tension above the CMC, chloride counter-ion binding to the micelle, and the standard enthalpy of micelle formation per mole of surfactant (ΔmicH°) were compared to those characterizing alkyltrimethylammonium chlorides or bromides with the same tail lengths. The value of TK ranged between 292 and 314 K and increased strongly with the increase in the chain length of the hydrophobic tail. Micellization was described as both entropy and enthalpy-driven. Based on the direct calorimetry measurements, the general trends in the CMC with the temperature, hydrophobic tail length, and NaCl addition were found to be similar to those of other types of cationic surfactants. The particularly exothermic character of micellization was ascribed to the hydrogen-binding capacity of the guanidinium head-group.


Subject(s)
Guanidine/chemistry , Micelles , Surface-Active Agents/chemistry , Calorimetry , Cations , Guanidine/analogs & derivatives , Magnetic Resonance Spectroscopy , Surface Tension , Temperature
8.
Environ Sci Pollut Res Int ; 21(15): 9334-43, 2014.
Article in English | MEDLINE | ID: mdl-24728575

ABSTRACT

Sorption performance of cation-exchange resins Amberlite® IRN77 and Amberlite™ IRN9652 toward Cs(I) and Sr(II) has been tested in single-component aqueous solutions and simulated waste effluents containing other monovalent (Effluent 1) or divalent (Effluent 2) metal cations, as well as nitrate, borate, or carbonate anions. The individual sorption isotherms of each main component were measured by the solution depletion method. The differential molar enthalpy changes accompanying the ion-exchange between Cs+ or Sr2+ ions and protons at the resin surface from single-component nitrate solutions were measured by isothermal titration calorimetry and they showed a higher specificity of the two resins toward cesium. Compared to the retention limits of both resins under such idealized conditions, an important depression in the maximum adsorption capacity toward each main component was observed in multication systems. The overall effect of ion exchange process appeared to be an unpredictable outcome of the individual sorption capacities of the two resins toward various cations as a function of the cation charge, size, and concentration. The cesium retention capacity of the resins was diminished to about 25% of the "ideal" value in Effluent 1 and 50% in Effluent 2; a further decrease to about 15% was observed upon concomitant strontium addition. The uptake of strontium by the resins was found to be less sensitive to the addition of other metal components: the greatest decrease in the amount adsorbed was 60% of the ideal value in the two effluents for Amberlite® IRN77 and 75% for Amberlite™ IRN9652. It was therefore demonstrated that any performance tests carried out under idealized conditions should be exploited with much caution to predict the real performance of cation exchange resins under conditions of cation competition.


Subject(s)
Cation Exchange Resins/chemistry , Cations , Metals, Heavy/chemistry , Wastewater/chemistry , Water Purification/methods , Adsorption , Environmental Pollution , Hydrogen-Ion Concentration , Industrial Waste , Ion Exchange , Ion Exchange Resins/chemistry
9.
J Colloid Interface Sci ; 396: 205-9, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23434156

ABSTRACT

The integral molar enthalpies of displacement, Δdplh, accompanying adsorption of Mg(II), Ca(II), Sr(II), Ba(II), Cd(II), Co(II), Zn(II), and Eu(III) cations from aqueous solutions of metal nitrate onto Spherosil XO75LS at 298K were determined based on the combination of liquid flow calorimetry and classical adsorption for two degrees of surface coverage: 0.035µmolm(-2) and 0.08µmolm(-2), in the presence of 0.1molL(-1) sodium nitrate in the aqueous phase at pH 5, 6, and 7. The displacement was shown to be endothermic and quite independent of the chemical specificity of the adsorbing metal. Two enthalpy effects were postulated to contribute mostly to the positive Δdplh values, depending on the experimental pH value: (i) cation dehydration upon adsorption and (ii) deprotonation of surface silanols to create negatively charged SiO(-) sites. Changing proportions among the various adsorbed species, including "free" Eu(3+) or Cd(2+) cations and hydrolyzed Eu(OH)(2+), Eu(OH)2(+) or Cd(OH)(+) cations, were accepted to explain the downward trends in Δdplh with increasing extent of adsorption for Eu(III) and Cd(II).

10.
J Colloid Interface Sci ; 395: 269-76, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23352873

ABSTRACT

Important structural modifications occur in swelling clays upon water adsorption. The multi-scale evolution of the swelling clay structure is usually evidenced by various experimental techniques. However, the driving force behind such phenomena is still not thoroughly understood. It appears strongly dependent on the nature of the interlayer cation. In the case of montmorillonites saturated with alkaline cations, it was inferred that the compensating cation or the layer surface could control the hydration process and thus the opening of the interlayer space, depending on the nature of the interlayer cation. In the present study, emphasis is put on the impact of divalent alkaline-earth cations compensating the layer charge in montmorillonites. Since no experimental technique offers the possibility of directly determining the hydration contributions related to interlayer cations and layer surfaces, an approach based on the combination of electrostatic calculations and immersion data is developed here, as already validated in the case of montmorillonites saturated by alkaline cations. This methodology allows to estimate the hydration energy for divalent interlayer cations and therefore to shed a new light on the driving force for hydration process occurring in montmorillonites saturated with alkaline-earth cations. Firstly, the surface energy values obtained from the electrostatic calculations based on the Electronegativity Equalization Method vary from 450 mJ m(-2) for Mg-montmorillonite to 1100 mJ m(-2) for Ba-montmorillonite. Secondly, considering both the hydration energy for cations and layer surfaces, the driving force for the hydration of alkaline-earth saturated montmorillonites can be attributed to the interlayer cation in the case of Mg-, Ca-, Sr-montmorillonites and to the interlayer surface in the case of Ba-montmorillonites. These results explain the differences in behaviour upon water adsorption as a function of the nature of the interlayer cation, thereby allowing the macroscopic swelling trends to be better understood. The knowledge of hydration processes occurring in homoionic montmorillonites saturated with both the alkaline and the alkaline-earth cations may be of great importance to explain the behaviour of natural clay samples where mixtures of the two types of interlayer cation are present and also provides valuable information on the cation exchange occurring in the swelling clays.

11.
J Colloid Interface Sci ; 386(1): 300-6, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-22889625

ABSTRACT

Fundamental aspects of the removal of heavy metals from aqueous streams under conditions of competition among the various species have been studied between pH 3 and 9 on Spherosil XO75LS, ordered mesoporous MCM-41 and MCF silicas, as well as a MCF sample grafted with (3-aminopropyl)methoxydimethylsilane (AMPS-MCF). Cd(II), Co(II), Pb(II), or Sr(II) nitrate solutions were used to determine the percentage of metal uptake by each solid at 298 K as a function of the pH of the equilibrium solution, at an initial metal concentration of 0.0001 mol L(-1) and the ionic strength being fixed with 0.01 mol L(-1) NaNO(3). Almost complete retention of the heavy metals on the four solid samples was observed, with the process beginning at pH values smaller than those marking the onset of "bulk" precipitation of a given metal in "free" solution. The heavy metal-uptake mechanism was regarded as hydrolysis-like phenomenon in metal-containing solid suspensions. Weak adsorption of metal species from slightly acidic and neutral solutions was a kind of nucleation step. Adding cadmium to an equimolar solution containing cobalt, lead, or strontium showed no significant effect on the retention of the main metal component. This indicated the great independence of the retention mechanisms.

12.
J Colloid Interface Sci ; 363(2): 465-75, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21855887

ABSTRACT

The influence of different physical factors on the adsorption of the cationic surfactant benzalkonium chloride (BC) and the model drug sulfamethoxazole by a purified natural clinoptilolite (NZ) has been studied in order to employ zeolite-surfactant-drug composites as drug deliverer. It has been demonstrated that the adsorption of BC and sulfamethoxazole onto NZ depends of the time, the temperature, the ionic strength and the pH of the aqueous medium. The optimal conditions for the preparation of the zeolite-surfactant and zeolite-surfactant-drug composite materials are established. The results of the composite characterization support the presence of BC and sulfamethoxazole, as well as the structural stability of NZ during the treatments performed. The release experiments in acid medium demonstrate that the adsorption of sulfamethoxazole is reversible. It is also confirmed that the drug release profile corresponds to a diffusion or zero-order mechanism as a function of the compression pressure.


Subject(s)
Benzalkonium Compounds/chemistry , Sulfamethoxazole/chemistry , Temperature , Zeolites/chemistry , Adsorption , Crystallography, X-Ray , Drug Carriers/chemistry , Hydrogen-Ion Concentration , Models, Molecular , Osmolar Concentration , Surface Properties , Time Factors
13.
J Colloid Interface Sci ; 344(2): 402-9, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20110091

ABSTRACT

Complex interactions of phenol (PhOH), heptanol (HeOH) and heptanoic acid (HeOIC) with micellar aggregates of hexadecyltrimethylammonium bromide (HTAB) in aqueous solutions at surfactant concentrations close to the CMC, HeOH or HeOIC content of 0.5 mmol kg(-1), and phenol molality of 1, 5, or 10 mmol kg(-1) have been investigated at 303 K by means of (1)H NMR spectroscopy, titration calorimetry and solution conductimetry. The analysis of the composition-dependence of the (1)H chemical shifts assigned to selected protons in the surfactant and additive units revealed the location of PhOH both within the hydrophobic micelle core and in the vicinity of the quaternary ammonium groups, the phenol penetration being somewhat deeper in the presence of HeOIC. The phenomenon was globally more exothermic with increasing extent of PhOH solubilization and it was accompanied by a gradual decrease in the positive entropy of micellization. The solubilization was competitive for high phenol contents in the aqueous phase, with some HeOH and HeOIC units being displaced progressively towards the aqueous phase.


Subject(s)
Cetrimonium Compounds/chemistry , Heptanoic Acids/chemistry , Heptanol/chemistry , Phenols/chemistry , Surface-Active Agents/chemistry , Cetrimonium , Magnetic Resonance Spectroscopy/standards , Micelles , Reference Standards , Surface Properties
14.
Colloids Surf B Biointerfaces ; 76(2): 421-6, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20036521

ABSTRACT

The combined adsorption onto purified natural clinoptilolite (NZ) of the cationic surfactant benzalkonium chloride (BC) and the model drugs metronidazole and sulfamethoxazole has been studied in order to design systems for the storage and release of drugs. The equilibrium adsorption of benzyldimethylalkylammonium chloride surfactants with hydrocarbon chain lengths corresponding to 12, 14 and 16 carbon atoms (BC12, BC14 and BC16) onto NZ from aqueous solutions was compared to that of BC. The effect of exchangeable cations on the NZ structure and that of acid-base pre-treatment of NZ on the adsorption capacity of BC was evaluated. It was shown that the nature of the exchangeable cations had little influence on the adsorption of BC onto NZ, and that acid-base treatments of NZ led to a decrease in the amount of surfactant adsorbed. The results indicated that the adsorption of the less polar drug, sulfamethoxazole, was enhanced by the presence of BC12 at the solid-liquid interface, whereas the uptake of metronidazole was independent of the surfactant adsorption.


Subject(s)
Benzalkonium Compounds/chemistry , Metronidazole/chemistry , Sulfamethoxazole/chemistry , Surface-Active Agents/chemistry , Zeolites/chemistry , Adsorption , Cations/chemistry , Solubility , Surface Properties
15.
Langmuir ; 25(9): 4868-74, 2009 May 05.
Article in English | MEDLINE | ID: mdl-19317388

ABSTRACT

Competitive interactions of phenol (PhOH) with micellar aggregates of hexadecyltrimethylammonium bromide (HTAB) against 1-butanol (BuOH) in aqueous solutions at surfactant concentrations close to the critical micelle concentration (CMC), BuOH concentration of 0.5 mmol kg(-1), and phenol contents of 1, 5, or 10 mmol kg(-1) have been investigated at 303 K by means of (1)H NMR spectroscopy, titration calorimetry, and solution conductimetry. The solubilization loci for phenol were deduced from the composition-dependence of the (1)H chemical shifts assigned to various protons in the surfactant and additive units. Since in pure HTAB solutions phenol is already in competition with Br(-), addition of 1 mmol kg(-1) NaBr to the system weakens the phenol competitiveness. The presence of butanol in the HTAB micelles causes phenol to penetrate deeper toward the hydrophobic micelle core. For higher phenol contents, the butanol molecules are constrained to remain in the bulk solution and are progressively replaced within the HTAB micelles by the aromatic units. The competitive character of phenol solubilization against butanol is well supported by changes in the thermodynamic parameters of HTAB micellization in the presence of both of the additives.

16.
J Colloid Interface Sci ; 331(2): 281-7, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19135208

ABSTRACT

The present study aims to investigate the behavior of a series of cationic Gemini surfactants with a hydrophilic spacer at liquid-gas and solid-liquid interfaces, with particular emphasis on the effect of spacer length. Gemini surfactants containing two quaternary ammonium groups bound by an ethylene oxide spacer chain, referred to as 12-EO(x)-12 with x = 1,3,7 and 12 were synthesized. Surface tension measurements were used to show that the hydrophilic spacer with oxyethylene moieties was not fully extended at the air-water interface. With increasing the spacer group size, it became sufficiently flexible to adopt a particular conformation with a loop at the water side of the interface. A combined study by adsorption isotherm measurements and (1)H NMR spectroscopy allowed a detailed description of the adsorption mechanism of these investigated 12-EO(x)-12 surfactants, with NMR providing more precise information on the conformation of hydrophilic spacer at the solid-liquid interface. Binding to the silica surface involved one cationic headgroup for the surfactants with a short spacer and the two headgroups for the ones with a long spacer. The number of charged surface sites was estimated by considering the dimeric surfactant as a "molecular ruler." The small density of adsorption sites gave rise to the formation of pinned surface micelles.

17.
J Colloid Interface Sci ; 326(1): 227-34, 2008 Oct 01.
Article in English | MEDLINE | ID: mdl-18687446

ABSTRACT

Interactions of phenol (PhOH) with micellar aggregates of hexadecyltrimethylammonium bromide (HTAB) in aqueous solutions at surfactant concentrations close to the CMC and phenol contents of 1, 5, or 10 mmol kg(-1) have been investigated at 303 K by means of titration calorimetry, solution conductimetry, and (1)H NMR spectroscopy. Estimates of the main thermodynamic parameters related to HTAB micellization were made for PhOH/HTAB/H(2)O systems based on the specific conductivity measurements and calorimetric determination of the cumulative enthalpy of dilution as functions of the surfactant concentration at a fixed additive content. The combined analysis of the results obtained in H(2)O solutions pointed to the preferential location of PhOH in the outer micelle parts by an enthalpy-driven mechanism. Additional PhOH molecules were located increasingly deeper within the micelle core. The (1)H NMR study of PhOH solubilization by 1.5 mmol kg(-1) HTAB solutions in D(2)O indicated that the two categories of the solubilization site became saturated with the solubilizate already at the lowest additive content. Dissimilar amounts of the solubilized material in H(2)O and D(2)O solutions were ascribed to the difference in the initial micelle structures formed in the two solvents, as inferred from calorimetry and (1)H NMR studies of the HTAB micellization in D(2)O and H(2)O.


Subject(s)
Cetrimonium Compounds/chemistry , Micelles , Phenol/chemistry , Surface-Active Agents/chemistry , Calorimetry , Cetrimonium , Electric Conductivity , Nuclear Magnetic Resonance, Biomolecular , Protons , Solubility , Thermodynamics
18.
Chem Commun (Camb) ; (27): 3118-20, 2008 Jul 21.
Article in English | MEDLINE | ID: mdl-18594714

ABSTRACT

Copper-containing mesoporous silica spheres of size in the colloidal range with perfect conservation of pore-ordering, shape and monodispersity and high intra-pore metal dispersion were prepared via a new one-step synthesis and functionalisation route.


Subject(s)
Copper/chemistry , Nanospheres/chemistry , Silicon Dioxide/chemical synthesis , Adsorption , Nitrogen/chemistry , Porosity , Silicon Dioxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...