Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Commun ; 13(1): 7502, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36509767

ABSTRACT

Sex differences in the lifetime risk and expression of disease are well-known. Preclinical research targeted at improving treatment, increasing health span, and reducing the financial burden of health care, has mostly been conducted on male animals and cells. The extent to which sex differences in phenotypic traits are explained by sex differences in body weight remains unclear. We quantify sex differences in the allometric relationship between trait value and body weight for 363 phenotypic traits in male and female mice, recorded in >2 million measurements from the International Mouse Phenotyping Consortium. We find sex differences in allometric parameters (slope, intercept, residual SD) are common (73% traits). Body weight differences do not explain all sex differences in trait values but scaling by weight may be useful for some traits. Our results show sex differences in phenotypic traits are trait-specific, promoting case-specific approaches to drug dosage scaled by body weight in mice.


Subject(s)
Sex Characteristics , Female , Mice , Male , Animals , Phenotype , Body Weight , Body Size
2.
J Gerontol A Biol Sci Med Sci ; 74(10): 1542-1548, 2019 09 15.
Article in English | MEDLINE | ID: mdl-29718269

ABSTRACT

One of the key tenets of life-history theory is that reproduction and survival are linked and that they trade-off with each other. When dietary resources are limited, reduced reproduction with a concomitant increase in survival is commonly observed. It is often hypothesized that this dietary restriction effect results from strategically reduced investment in reproduction in favor of somatic maintenance to survive starvation periods until resources become plentiful again. We used experimental evolution to test this "waiting-for-the-good-times" hypothesis, which predicts that selection under sustained dietary restriction will favor increased investment in reproduction at the cost of survival because "good-times" never come. We assayed fecundity and survival of female Drosophila melanogaster fruit flies that had evolved for 50 generations on three different diets varying in protein content-low (classic dietary restriction diet), standard, and high-in a full-factorial design. High-diet females evolved overall increased fecundity but showed reduced survival on low and standard diets. Low-diet females evolved reduced survival on low diet without corresponding increase in reproduction. In general, there was little correspondence between the evolution of survival and fecundity across all dietary regimes. Our results contradict the hypothesis that resource reallocation between fecundity and somatic maintenance underpins life span extension under dietary restriction.


Subject(s)
Caloric Restriction , Fertility/physiology , Longevity/physiology , Animals , Drosophila melanogaster , Female , Models, Animal
3.
Heredity (Edinb) ; 121(3): 282-291, 2018 09.
Article in English | MEDLINE | ID: mdl-29802349

ABSTRACT

Mating often bears large costs to females, especially in species with high levels of sexual conflict over mating rates. Given the direct costs to females associated with multiple mating, which include reductions in lifespan and lifetime reproductive success, past research focused on identifying potential indirect benefits (through increases in offspring fitness) that females may accrue. Far less attention has, however, been devoted to understanding how costs of sexual interactions to females may extend across generations. Hence, little is known about the transgenerational implications of variation in mating rates, or the net consequences of maternal sexual activities across generations. Using the seed beetle, Callosobruchus maculatus, a model system for the study of sexual conflict, we investigate the effects of mating with multiple males versus a single male, and tease apart effects due to sexual harassment and those due to mating per se, over three generations. A multigenerational analysis indicated that females that were exposed to ongoing sexual harassment and who also were permitted to mate with multiple males showed no difference in net fitness compared to females that mated just once without ongoing harassment. Intriguingly, however, females that were continually harassed, but permitted to mate just once, suffered a severe decline in net fitness compared to females that were singly (not harassed) or multiply mated (harassed, but potentially gaining benefits via mating with multiple males). Overall, the enhanced fitness in multiply mated compared to harassed females may indicate that multiple mating confers transgenerational benefits. These benefits may counteract, but do not exceed (i.e., we found no difference between singly and multiply mated females), the large transgenerational costs of harassment. Our study highlights the importance of examining transgenerational effects from an inclusive (looking at both indirect benefits but also costs) perspective, and the need to investigate transgenerational effects across several generations if we are to fully understand the consequences of sexual interactions, sexual conflict evolution, and the interplay of sexual conflict and multi-generational costs and benefits.


Subject(s)
Coleoptera/physiology , Longevity , Models, Biological , Reproduction , Sexual Behavior, Animal/physiology , Animals , Female , Male , Mothers
4.
Proc Biol Sci ; 283(1825): 20152726, 2016 Feb 24.
Article in English | MEDLINE | ID: mdl-26911958

ABSTRACT

Dietary restriction (DR), a reduction in nutrient intake without malnutrition, is the most reproducible way to extend lifespan in a wide range of organisms across the tree of life, yet the evolutionary underpinnings of the DR effect on lifespan are still widely debated. The leading theory suggests that this effect is adaptive and results from reallocation of resources from reproduction to somatic maintenance, in order to survive periods of famine in nature. However, such response would cease to be adaptive when DR is chronic and animals are selected to allocate more resources to reproduction. Nevertheless, chronic DR can also increase the strength of selection resulting in the evolution of more robust genotypes. We evolved Drosophila melanogaster fruit flies on 'DR', 'standard' and 'high' adult diets in replicate populations with overlapping generations. After approximately 25 generations of experimental evolution, male 'DR' flies had higher fitness than males from 'standard' and 'high' populations. Strikingly, this increase in reproductive success did not come at a cost to survival. Our results suggest that sustained DR selects for more robust male genotypes that are overall better in converting resources into energy, which they allocate mostly to reproduction.


Subject(s)
Biological Evolution , Diet , Drosophila melanogaster/physiology , Animals , Caloric Restriction , Longevity , Male , Reproduction
5.
Age (Dordr) ; 35(4): 1193-204, 2013 Aug.
Article in English | MEDLINE | ID: mdl-22798158

ABSTRACT

For the evolution of life histories, the trade-off between survival and reproduction is fundamental. Because sexes optimize fitness in different ways, this trade-off is expected to be resolved differently by males and females. Consequently, the sexes are predicted to respond differently to changes in resource availability. In fruit flies, research on dietary restriction has focused largely on females maintained in the absence of males, thereby neglecting sexual interactions that affect reproductive behavior of both sexes under more natural conditions. Here, we tested for the interactive effects of diet (40, 60, 100, and 300 % of standard yeast concentrations) and social environment (separate-sex vs. mixed-sex groups) on male and female Drosophila melanogaster life histories. Additionally, we evaluated the essential amino acid methionine as an agent that can uncouple the survival-reproduction trade-off. We show sex differences in the effect of social environment on survival patterns, but not on reproductive fitness. In females, yeast had a positive effect on reproduction and a negative effect on survival. In males, yeast had a negative effect on reproduction and the effect on survival depended on the social environment. Methionine reduced survival, but had no effect on reproduction. Our findings highlight the need to include both sexes and to vary social environments in research programs aimed at lifespan extension and call for further evaluation of the fecundity-restoring effect of methionine.


Subject(s)
Caloric Restriction , Drosophila melanogaster/growth & development , Life Cycle Stages/physiology , Longevity/physiology , Methionine/metabolism , Animals , Female , Male , Reproduction , Sex Characteristics , Social Environment
6.
BMC Ecol ; 12: 13, 2012 Jul 24.
Article in English | MEDLINE | ID: mdl-22827893

ABSTRACT

BACKGROUND: Movement behaviour can be influenced by a multitude of biotic and abiotic factors. Here, we investigate the speed of movement in relation to environmental and individual phenotypic properties in subadult common lizards (Lacerta vivipara). We aim to disentangle the importance of substrate, cover, humidity, basking opportunity and individual phenotype on moving tendencies in 12 treatment combinations, at which each lizard was tested. RESULTS: We find that movement behaviour depends on the starting conditions, the physical properties of the dispersal corridor, and on the individuals' phenotype. Specifically, the presence of cover and substrate providing suitable traction in the corridor had positive effects on individual movement decisions. Additionally, we find high phenotypic variation in the propensity to move dependent on the presence of cover. Individual back patterns also strongly affected movement decisions in interaction with the physical properties of the dispersal corridor. CONCLUSIONS: Our results highlight the importance of understanding the habitat resistance for movement patterns, with humid habitats with covering vegetation providing the best conditions to initiate movement in the common lizard. In addition, population effects, differences in back pattern phenotype and individual plasticity were identified as key parameters influencing movement behaviour.


Subject(s)
Ecosystem , Lizards/physiology , Animals , Female , Male , Population Dynamics
7.
BMC Evol Biol ; 9: 289, 2009 Dec 10.
Article in English | MEDLINE | ID: mdl-20003302

ABSTRACT

BACKGROUND: Inbreeding can slow population growth and elevate extinction risk. A small number of unrelated immigrants to an inbred population can substantially reduce inbreeding and improve fitness, but little attention has been paid to the sex-specific effects of immigrants on such "genetic rescue". We conducted two subsequent experiments to investigate demographic consequences of inbreeding and genetic rescue in guppies. RESULTS: Populations established from pairs of full siblings that were descended either from two generations of full-sibling inbreeding or unrelated outbred guppies did not grow at different rates initially, but when the first generation offspring started breeding, outbred-founded populations grew more slowly than inbred-founded populations. In a second experiment, adding two outbred males to the inbred populations resulted in significantly faster population growth than in control populations where no immigrants were added. Adding females resulted in growth at a rate intermediate to the control and male-immigrant treatments. CONCLUSION: The slower growth of the outbred-founded than inbred-founded populations is the opposite of what would be expected under inbreeding depression unless many deleterious recessive alleles had already been selectively purged in the inbreeding that preceded the start of the experiment, and that significant inbreeding depression occurred when the first generation offspring in outbred-founded populations started to inbreed. The second experiment revealed strong inbreeding depression in the inbred founded populations, despite the apparent lack thereof in these populations earlier on. Moreover, the fact that the addition of male immigrants resulted in the highest levels of population growth suggests that sex-specific genetic rescue may occur in promiscuous species, with male rescue resulting in higher levels of outbreeding than female rescue.


Subject(s)
Poecilia/genetics , Animals , Female , Genetic Fitness , Geography , Inbreeding , Male , Sexual Behavior, Animal
8.
Am Nat ; 173(6): 792-802, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19374505

ABSTRACT

Males and females differ in their reproductive strategies. Accordingly, sexually dimorphic optima in the allocation of resources to reproduction should select for sex-specific life histories, including sex-specific resolution of the key trade-off between reproduction and longevity. While males are expected to increase reproductive effort with increasing age under sexual selection theory, female reproductive effort should rather decrease after maturity, due to waning selection pressure at older ages. Sex differences in reproductive trade-offs and in the external mortality hazards experienced during the population's evolutionary history are both likely to shape sex differences in reproductive and actuarial (age-specific mortality) aging. Despite the importance of small-bodied, short-lived animals as laboratory models for life-history and aging studies, very little is known about sex differences in life-history patterns under natural conditions. Here, we tested for sex-specific patterns of reproductive and actuarial aging in field crickets under near-natural conditions. Both males and females showed actuarial senescence, with females exhibiting more rapid aging than males but with a later onset. Female and male reproductive effort showed a senescent decrease, with the peaks at different ages. Our findings provide the first demonstration of sexual dimorphism in age-dependent patterns of both survival and reproduction in an insect under near-natural conditions.


Subject(s)
Gryllidae/physiology , Longevity , Sex Characteristics , Sexual Behavior, Animal , Animals , Female , Male , Models, Biological , Oviparity
9.
Am Nat ; 172(6): 843-54, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18983251

ABSTRACT

Mate choice is often based on multiple signal traits and can be influenced by context-dependent factors. Understanding the importance of these signals and factors can be difficult because they are often correlated and might interact. Here, we experimentally disentangle the effects of familiarity, kinship, pattern rarity, and ornament patterns on mate choice in guppies. We estimate whether these factors alter sexual selection on six phenotypic traits known to influence male attractiveness. Rarity of the male's phenotype is the only context-dependent factor that significantly influenced female mating decisions, with common patterns being least attractive. This preference for rare male patterns is a source of negative frequency-dependent selection that may contribute to maintaining the extreme polymorphism in male guppy coloration. Neither visual familiarity nor relatedness between mating partners had any significant effect on mate choice decisions. There was significant linear and nonlinear sexual selection on ornamental traits, but this was not influenced by the context-dependent measures. Our approach highlights the complexity of female mate choice and sexual selection, as well as the value of combining multifactorial experiments with multivariate selection analyses. Our study shows that both negative frequency-dependent selection and disruptive selection contribute to the maintenance of extreme polymorphism in guppies.


Subject(s)
Choice Behavior/physiology , Mating Preference, Animal/physiology , Phenotype , Pigmentation/physiology , Poecilia/physiology , Animals , Female , Male , Poecilia/genetics , Sexual Behavior, Animal/physiology
10.
Evolution ; 62(11): 2929-35, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18752613

ABSTRACT

A growing number of studies highlight the nontransitive properties of ejaculates when they are in competition to fertilize a female's eggs. Increasingly, these studies suggest that postcopulatory processes act as a filter against sperm from closely related males or those with similar genotypes, limiting the deleterious effects of inbreeding on offspring fitness. We investigated the potential for such postcopulatory mechanisms of inbreeding avoidance in the guppy (Poecilia reticulata), a promiscuous livebearing fish. We used artificial insemination as a method of delivering to a female the combined ejaculates from a first cousin (relatedness coefficient r = 0.125) and an unrelated male. This method of sperm delivery controls behavioral processes of pre- and postcopulatory female choice, which can bias paternity toward unrelated males. Our genetic analysis revealed no effect of parental relatedness on paternity outcomes. The observed mean paternity share for related males (0.47) and associated variance did not differ significantly from an expected binomial distribution that assumes no biased use of sperm with respect to relatedness (0.5). Although our data provide no evidence for postcopulatory mechanisms of inbreeding avoidance, the ability of female guppies to influence ejaculate transfer and retention offers an alternative and easily testable mechanism of inbreeding avoidance in this species.


Subject(s)
Choice Behavior/physiology , Competitive Behavior/physiology , Fertilization/genetics , Poecilia/genetics , Animals , Avoidance Learning/physiology , Crosses, Genetic , DNA Fingerprinting , Female , Male , Spermatozoa/physiology
11.
PLoS One ; 2(1): e155, 2007 Jan 17.
Article in English | MEDLINE | ID: mdl-17225859

ABSTRACT

Differences in the ways in which males and females maximize evolutionary fitness can lead to intra-locus sexual conflict in which genes delivering fitness benefits to one sex are costly when expressed in the other. Trade-offs between current reproductive effort and future reproduction and survival are fundamental to the evolutionary biology of ageing. This leads to the prediction that sex differences in the optimization of age-dependent reproductive effort may generate intra-locus sexual conflict over ageing rates. Here we test for intra-locus sexual conflict over age-dependent reproductive effort and longevity in the black field cricket, Teleogryllus commodus. Using a half-sib breeding design, we show that the most important components of male and female reproductive effort (male calling effort and the number of eggs laid by females) were positively genetically correlated, especially in early adulthood. However, the genetic relationships between longevity and reproductive effort were different for males and females, leading to low genetic covariation between male and female longevity. The apparent absence of intra-locus sexual conflict over ageing suggests that male and female longevity can evolve largely independently of one another.


Subject(s)
Aging/physiology , Genetic Fitness , Gryllidae/physiology , Reproduction/physiology , Sexual Behavior, Animal/physiology , Animals , Female , Genotype , Longevity , Male , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...