Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Biogeochemistry ; 167(4): 609-629, 2024.
Article in English | MEDLINE | ID: mdl-38707517

ABSTRACT

Restoration of drained peatlands through rewetting has recently emerged as a prevailing strategy to mitigate excessive greenhouse gas emissions and re-establish the vital carbon sequestration capacity of peatlands. Rewetting can help to restore vegetation communities and biodiversity, while still allowing for extensive agricultural management such as paludiculture. Belowground processes governing carbon fluxes and greenhouse gas dynamics are mediated by a complex network of microbial communities and processes. Our understanding of this complexity and its multi-factorial controls in rewetted peatlands is limited. Here, we summarize the research regarding the role of soil microbial communities and functions in driving carbon and nutrient cycling in rewetted peatlands including the use of molecular biology techniques in understanding biogeochemical processes linked to greenhouse gas fluxes. We emphasize that rapidly advancing molecular biology approaches, such as high-throughput sequencing, are powerful tools helping to elucidate the dynamics of key biogeochemical processes when combined with isotope tracing and greenhouse gas measuring techniques. Insights gained from the gathered studies can help inform efficient monitoring practices for rewetted peatlands and the development of climate-smart restoration and management strategies. Supplementary Information: The online version contains supplementary material available at 10.1007/s10533-024-01122-6.

2.
Ambio ; 53(7): 970-983, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38696060

ABSTRACT

The EU Nature Restoration Law (NRL) is critical for the restoration of degraded ecosystems and active afforestation of degraded peatlands has been suggested as a restoration measure under the NRL. Here, we discuss the current state of scientific evidence on the climate mitigation effects of peatlands under forestry. Afforestation of drained peatlands without restoring their hydrology does not fully restore ecosystem functions. Evidence on long-term climate benefits is lacking and it is unclear whether CO2 sequestration of forest on drained peatland can offset the carbon loss from the peat over the long-term. While afforestation may offer short-term gains in certain cases, it compromises the sustainability of peatland carbon storage. Thus, active afforestation of drained peatlands is not a viable option for climate mitigation under the EU Nature Restoration Law and might even impede future rewetting/restoration efforts. Instead, restoring hydrological conditions through rewetting is crucial for effective peatland restoration.


Subject(s)
Conservation of Natural Resources , European Union , Forestry , Soil , Conservation of Natural Resources/legislation & jurisprudence , Conservation of Natural Resources/methods , Forestry/legislation & jurisprudence , Forestry/methods , Soil/chemistry , Forests , Carbon Sequestration , Environmental Restoration and Remediation/methods , Climate Change , Ecosystem , Wetlands
3.
FEMS Microbiol Ecol ; 99(6)2023 05 31.
Article in English | MEDLINE | ID: mdl-37169886

ABSTRACT

The hydrogen-dependent and methylotrophic order Methanomassiliicoccales consists of the families Methanomethylophilaceae and Methanomassiliicoccaceae. While Methanomethylophilaceae are comparatively well studied, there is a lack of knowledge on Methanomassiliicoccaceae. In this 16S rRNA gene amplicon sequencing-based study we investigated the temporal and spatial dynamics of the Methanomassiliicoccales in drained and rewetted sites of three common temperate fen peatlands. A 2.5-year monitoring of the fen microbiome composition at three peat depths revealed a dynamic methanogen and Methanomassiliicoccales composition across space and time. Four Methanomassiliicoccales phylotypes were found and they were differentially distributed between the fen types. The wetland cluster phylotype was omnipresent and dominant in abundance in all sites along all depths. The Methanomassiliicoccus phylotype was highly abundant in topsoil while the AB364942 phylotype was exclusively found in deeper regions of the rewetted percolation fen. The phylotype affiliated with Methanomassiliicoccales strain U3.2.1 was only detected in the rewetted percolation fen. We discuss the distribution of the four phylotypes with implications for their ecophysiology, where oxygen tolerance and substrate spectrum might play major roles. In conclusion, the Methanomassiliicoccales are widespread and account for a significant proportion of methanogens, which might suggest their importance for methane emissions from peatlands.


Subject(s)
Euryarchaeota , Microbiota , Humans , RNA, Ribosomal, 16S/genetics , Euryarchaeota/genetics , Wetlands , Soil/chemistry , Microbiota/genetics , Methane
4.
Glob Chang Biol ; 29(13): 3678-3691, 2023 07.
Article in English | MEDLINE | ID: mdl-37029755

ABSTRACT

Drainage and agricultural use transform natural peatlands from a net carbon (C) sink to a net C source. Rewetting of peatlands, despite of high methane (CH4 ) emissions, holds the potential to mitigate climate change by greatly reducing CO2 emissions. However, the time span for this transition is unknown because most studies are limited to a few years. Especially, nonpermanent open water areas often created after rewetting, are highly productive. Here, we present 14 consecutive years of CH4 flux measurements following rewetting of a formerly long-term drained peatland in the Peene valley. Measurements were made at two rewetted sites (non-inundated vs. inundated) using manual chambers. During the study period, significant differences in measured CH4 emissions occurred. In general, these differences overlapped with stages of ecosystem transition from a cultivated grassland to a polytrophic lake dominated by emergent helophytes, but could also be additionally explained by other variables. This transition started with a rapid vegetation shift from dying cultivated grasses to open water floating and submerged hydrophytes and significantly increased CH4 emissions. Since 2008, helophytes have gradually spread from the shoreline into the open water area, especially in drier years. This process was periodically delayed by exceptional inundation and eventually resulted in the inundated site being covered by emergent helophytes. While the period between 2009 and 2015 showed exceptionally high CH4 emissions, these decreased significantly after cattail and other emergent helophytes became dominant at the inundated site. Therefore, CH4 emissions declined only after 10 years of transition following rewetting, potentially reaching a new steady state. Overall, this study highlights the importance of an integrative approach to understand the shallow lakes CH4 biogeochemistry, encompassing the entire area with its mosaic of different vegetation forms. This should be ideally done through a study design including proper measurement site allocation as well as long-term measurements.


Subject(s)
Ecosystem , Methane , Typhaceae , Carbon Dioxide/analysis , Grassland , Soil , Water , Wetlands
5.
Water Res ; 233: 119785, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36863278

ABSTRACT

Many European lakes have suffered from reed die-back since the 1950s. Previous studies have concluded that this is due to a combination of several interacting factors, but possibly also a single threat with high impact might be responsible for the phenomenon. In this study, we investigated 14 lakes in the Berlin area differing in reed development and sulphate concentration from 2000 to 2020. To unravel the decline of reed beds in some of the lakes with coal mining activities in the upper watershed, we compiled a comprehensive data set. Thus, the littoral zone of the lakes was divided into 1302 segments considering the reed ratio relative to segment area, water quality parameters, littoral characteristics and bank usage of the lakes which all have been monitored for 20 years. We ran two-way panel regressions with a within estimator to consider the spatial variation between and within the segments over time. The regression results revealed a strong negative relationship between reed ratio and sulphate concentrations (p<0.001) as well as tree shading (p<0.001) and a strong positive relationship with brushwood fascines (p<0.001). Taking only sulphate into account, reeds would have covered an additional area of 5.5 ha or 22.6% in 2020 (total reed area: 24.3 ha) in the absence of increased sulphate concentrations. In conclusion, changes in water quality upstream the catchment cannot be ignored in the development of management plans for downstream lakes.


Subject(s)
Ecosystem , Lakes , Sulfates , Water Quality , Trees , Environmental Monitoring
6.
Sci Total Environ ; 871: 161979, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36739030

ABSTRACT

Climate change may increase the overall susceptibility of peatlands to fire. Smoldering fires in peatlands can cause substantial emissions of greenhouse gases. It is, however, less clear how smoldering affects the soil pore water quality. In this study, soil samples were collected from agricultural fen and disturbed bog study sites in Germany and Lithuania to quantify the effect of peat burning on pore water composition. The samples were air dried and smoldered under ignition temperature (approximately 200 °C) with different durations (0, 2, 5, and 10 h). Pore water samples were extracted from the soil to determine dissolved organic carbon (DOC) concentrations, dissolved organic matter (DOM) fractions, fluoride, extractable organically bound fluorine (EOF), and sulfate concentrations. The results showed that soil smoldering changes the peat pore water chemistry and that changes differ between fens and bogs. The smoldering duration is likewise influential. For fen grasslands, 2 and 5 h of smoldering of peat caused a >10-fold increase in DOC (up to 1600 mg L-1) and EOF concentrations. The fluoride (up to 60 mg L-1) and sulfate concentrations substantially exceeded WHO drinking water guidelines. In contrast, the temperature treatment decreased the DOC concentrations of samples from raised bogs by 90 %. The fluoride concentrations decreased, but sulfate concentrations increased after smoldering of the bog samples. DOC, fluoride, and sulfate concentrations of bogs varied significantly between the smoldering duration treatments. For all peat samples, the extracted DOM was dominated by humic-like substances before smoldering, but the fraction of low molecular weight substances increased after smoldering combustion. In conclusion, smoldering alters the biogeochemical processes in both peatland types and possibly impair the water quality of adjacent water resources especially in fen peat landscapes.

7.
Microorganisms ; 10(11)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36422374

ABSTRACT

Microorganisms acting as sinks for the greenhouse gas nitrous oxide (N2O) are gaining increasing attention in the development of strategies to control N2O emissions. Non-denitrifying N2O reducers are of particular interest because they can provide a real sink without contributing to N2O release. The bacterial strain under investigation (IGB 4-14T), isolated in a mesocosm experiment to study the litter decomposition of Phragmites australis (Cav.), is such an organism. It carries only a nos gene cluster with the sec-dependent Clade II nosZ and is able to consume significant amounts of N2O under anoxic conditions. However, consumption activity is considerably affected by the O2 level. The reduction of N2O was not associated with cell growth, suggesting that no energy is conserved by anaerobic respiration. Therefore, the N2O consumption of strain IGB 4-14T rather serves as an electron sink for metabolism to sustain viability during transient anoxia and/or to detoxify high N2O concentrations. Phylogenetic analysis of 16S rRNA gene similarity revealed that the strain belongs to the genus Flavobacterium. It shares a high similarity in the nos gene cluster composition and the amino acid similarity of the nosZ gene with various type strains of the genus. However, phylogenomic analysis and comparison of overall genome relatedness indices clearly demonstrated a novel species status of strain IGB 4-14T, with Flavobacterium lacus being the most closely related species. Various phenotypic differences supported a demarcation from this species. Based on these results, we proposed a novel species Flavobacterium azooxidireducens sp. nov. (type strain IGB 4-14T = LMG 29709T = DSM 103580T).

8.
J Environ Manage ; 311: 114808, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35245841

ABSTRACT

Acidification and salinisation of groundwater and surface water bodies are worldwide problems in post-mining landscapes due to acid mine drainage (AMD). In this study, we hypothesised that highly decomposed peat offers a suitable substrate for mitigating AMD pollution of water bodies and that hydraulic load affects the removal efficiency of iron and sulphate. A lysimeter experiment was conducted mimicking peatland rewetting to quantify iron and sulphate removal and pH changes at different loading rates. The low initial pH of 4 rose to 6 and electrical conductivity declined by up to 47%. The initially high concentrations of iron (>250 mg/L) and sulphate (>770 mg/L) declined by, on average, 87 and 78%, respectively. The removal efficiency of sulphate was negatively correlated with either the hydraulic or the sulphate load, respectively, i. e. the lower the hydraulic load, the higher the removal efficiency of sulphate. However, the removal of iron was not explained by the load. The results imply that desulphurication and thus subsequent precipitation of iron sulphides was the main removal process and that peatland rewetting is an effective measure to mitigate AMD pollution of freshwater systems. For the heavily AMD-polluted studied section of the River Spree, we estimated by combining experimental with field data that a sulphate load reduction of the river by about 20% (36,827 tons/yr) will occur if all peatlands in the sub-catchment (6067 ha; 6.7% of the total area) are rewetted. Future investigations must show if the pollutant removal is declining over time in decomposed peat layers due to acidification and/or lack of bioavailable carbon and how the rewetting of peatland with AMD will affect the restoration of their ecosystem functioning in the long term.

9.
FEMS Microbiol Ecol ; 97(9)2021 09 06.
Article in English | MEDLINE | ID: mdl-34427631

ABSTRACT

In the last decades, rewetting of drained peatlands is on the rise worldwide, to restore their significant carbon sink function. Despite the increasing understanding of peat microbiomes, little is known about the seasonal dynamics and network interactions of the microbial communities in these ecosystems, especially in rewetted fens (groundwater-fed peatlands). Here, we investigated the seasonal dynamics in both prokaryotic and eukaryotic microbiomes in three common fen types in Northern Germany. The eukaryotic microbiomes, including fungi, protists and microbial metazoa, showed significant changes in their community structures across the seasons in contrast to largely unaffected prokaryotic microbiomes. Furthermore, our results proved that the dynamics in eukaryotic microbiomes in the rewetted sites differed between fen types, specifically in terms of saprotrophs, arbuscular mycorrhiza and grazers of bacteria. The co-occurrence networks also exhibited strong seasonal dynamics that differed between rewetted and drained sites, and the correlations involving protists and prokaryotes were the major contributors to these dynamics. Our study provides the insight that microbial eukaryotes mainly define the seasonal dynamics of microbiomes in rewetted fen peatlands. Accordingly, future research should unravel the importance of eukaryotes for biogeochemical processes, especially the under-characterized protists and metazoa, in these poorly understood ecosystems.


Subject(s)
Eukaryota , Microbiota , Carbon Sequestration , Seasons , Soil
10.
Sci Total Environ ; 798: 149146, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34332389

ABSTRACT

For more than two decades, wetland restoration has been successfully applied in Denmark as a tool to protect watercourses from elevated nutrient inputs from agriculture, but little is known about how the flora and fauna respond to restoration. The main objective of this study was therefore to: (1) examine plant community characteristics in 10 wetland sites in the River Odense Kratholm catchment, restored between 2001 and 2011 by re-meandering the stream and disconnecting the tile drains, and (2) explore whether the effects of restoration on plant community characteristics change with the age of the restoration. Specifically, we hypothesised that plant community composition, species richness and diversity would improve with the age of the restoration and eventually approach the state of natural wetland vegetation. We found that the prevailing plant communities could be characterised as humid grasslands, moist fallow fields and improved grasslands, whereas the abundance of natural wetland plant communities (e.g., rich fens, fen-sedge beds and humid grasslands) was lower in both the recently restored as well as in older restored wetlands. Additionally, species richness and diversity did not seem to improve with the age of the restoration. We suggest that the continued high nutrient input at the restored sites in combination with restricted dispersal of wetland plant species may hamper the recovery of natural plant communities and that the sites therefore may stay botanically poor for many decades.


Subject(s)
Plants , Wetlands , Agriculture , Biodiversity , Denmark , Rivers
11.
Sci Total Environ ; 774: 145070, 2021 Jun 20.
Article in English | MEDLINE | ID: mdl-33607434

ABSTRACT

Integrated buffer zones (IBZ) are novel mitigation measures designed to decrease the loading of nitrogen (N) transported by subsurface drainage systems from agricultural fields to streams. In IBZ, drainage water flows into a pond with free water surface followed by an inundated, vegetated filterbed. This design provides an environment favorable for denitrification and thus a decrease in nitrate concentration is expected as water flow through the IBZ. However, due to the establishment of anaerobic conditions, there is a risk for increasing emissions of the greenhouse gases nitrous oxide (N2O) and methane (CH4). In this year-long study, we evaluated the N removal efficiency along with the risk of N2O and CH4 emissions from two pilot-scale IBZs (IBZ1 and 2). The two IBZs had very different yearly removal efficiencies, amounting to 29% and 71% of the total N load at IBZ1 and 2, respectively. This was probably due to differences in infiltration rates to the filterbed, which was 22% and 81% of the incoming water at IBZ1 and 2, respectively. The site (IBZ2) with the highest removal efficiency was a net N2O sink, while 0.9% of the removed nitrate was emitted as N2O at IBZ1. Both IBZs were net sources of CH4 but with different pathways of emission. In IBZ1 CH4 was mainly lost directly to the atmosphere, while waterborne losses dominated in IBZ2. In conclusion, the IBZs were effective in removing N three years after establishment, and although the IBZs acted as greenhouse gas sources, especially due to CH4, the emissions were comparable to those of natural wetlands and other drainage transport mitigation measures.

12.
Ambio ; 49(11): 1820-1837, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32494964

ABSTRACT

Diffusive losses of nitrogen and phosphorus from agricultural areas have detrimental effects on freshwater and marine ecosystems. Mitigation measures treating drainage water before it enters streams hold a high potential for reducing nitrogen and phosphorus losses from agricultural areas. To achieve a better understanding of the opportunities and challenges characterising current and new drainage mitigation measures in oceanic and continental climates, we reviewed the nitrate and total phosphorus removal efficiency of: (i) free water surface constructed wetlands, (ii) denitrifying bioreactors, (iii) controlled drainage, (iv) saturated buffer zones and (v) integrated buffer zones. Our data analysis showed that the load of nitrate was substantially reduced by all five drainage mitigation measures, while they mainly acted as sinks of total phosphorus, but occasionally, also as sources. The various factors influencing performance, such as design, runoff characteristics and hydrology, differed in the studies, resulting in large variation in the reported removal efficiencies.


Subject(s)
Agriculture , Ecosystem , Nitrogen , Nutrients , Phosphorus
13.
Microorganisms ; 8(4)2020 Apr 10.
Article in English | MEDLINE | ID: mdl-32290343

ABSTRACT

Drained peatlands are significant sources of the greenhouse gas (GHG) carbon dioxide. Rewetting is a proven strategy used to protect carbon stocks; however, it can lead to increased emissions of the potent GHG methane. The response to rewetting of soil microbiomes as drivers of these processes is poorly understood, as are the biotic and abiotic factors that control community composition. We analyzed the pro- and eukaryotic microbiomes of three contrasting pairs of minerotrophic fens subject to decade-long drainage and subsequent long-term rewetting. Abiotic soil properties including moisture, dissolved organic matter, methane fluxes, and ecosystem respiration rates were also determined. The composition of the microbiomes was fen-type-specific, but all rewetted sites showed higher abundances of anaerobic taxa compared to drained sites. Based on multi-variate statistics and network analyses, we identified soil moisture as a major driver of community composition. Furthermore, salinity drove the separation between coastal and freshwater fen communities. Methanogens were more than 10-fold more abundant in rewetted than in drained sites, while their abundance was lowest in the coastal fen, likely due to competition with sulfate reducers. The microbiome compositions were reflected in methane fluxes from the sites. Our results shed light on the factors that structure fen microbiomes via environmental filtering.

14.
Sci Total Environ ; 727: 138709, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32334232

ABSTRACT

Wetland buffer zones (WBZs) are riparian areas that form a transition between terrestrial and aquatic environments and are well-known to remove agricultural water pollutants such as nitrogen (N) and phosphorus (P). This review attempts to merge and compare data on the nutrient load, nutrient loss and nutrient removal and/or retention from multiple studies of various WBZs termed as riparian mineral soil wetlands, groundwater-charged peatlands (i.e. fens) and floodplains. Two different soil types ('organic' and 'mineral'), four different main water sources ('groundwater', 'precipitation', 'surface runoff/drain discharge', and 'river inundation') and three different vegetation classes ('arboraceous', 'herbaceous' and 'aerenchymous') were considered separately for data analysis. The studied WBZs are situated within the temperate and continental climatic regions that are commonly found in northern-central Europe, northern USA and Canada. Surprisingly, only weak differences for the nutrient removal/retention capability were found if the three WBZ types were directly compared. The results of our study reveal that for example the nitrate retention efficiency of organic soils (53 ± 28%; mean ± sd) is only slightly higher than that of mineral soils (50 ± 32%). Variance in load had a stronger influence than soil type on the N retention in WBZs. However, organic soils in fens tend to be sources of dissolved organic N and soluble reactive P, particularly when the fens have become degraded due to drainage and past agricultural usage. The detailed consideration of water sources indicated that average nitrate removal efficiencies were highest for ground water (76 ± 25%) and lowest for river water (35 ± 24%). No significant pattern for P retention emerged; however, the highest absolute removal appeared if the P source was river water. The harvesting of vegetation will minimise potential P loss from rewetted WBZs and plant biomass yield may promote circular economy value chains and provide compensation to land owners for restored land now unsuitable for conventional farming.


Subject(s)
Phosphorus/analysis , Wetlands , Canada , Europe , Hydrology , Nitrogen/analysis , Soil
15.
Sci Total Environ ; 721: 137763, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32172119

ABSTRACT

Peatland restoration is seen as an effective contribution to help achieve the aims of the Paris Agreement because currently huge amounts of peatlands in Northern Central Europe are under unsustainable drainage-based land use. If net zero greenhouse gas emissions from peatlands shall be reached by 2050, restoration measures have to be done as soon as possible. However, rewetting drained peatlands that were under intensive grassland use frequently results in high methane (CH4) emissions, which is often seen as a counter-argument against rewetting. To find the source of high CH4 emissions after rewetting and to explore the best possible way of peatland restoration (i.e., low CH4 emissions after rewetting) under near-natural conditions, we installed a field trial in a drained bog in north-western Germany. The trial consists of seven plots (~8 × 24 m2) representing the status quo-intensive grassland use- and six restoration approaches with combinations of rewetting either on the original surface or after topsoil removal (TSR), biomass harvesting or spreading Sphagnum spp. to initiate vegetation succession. On all seven plots we measured CH4 fluxes using closed chambers. In addition, we investigated CH4 production potential by incubating soil samples and determining methanogen abundance by quantitative PCR. Compared to rewetting on the original surface, CH4 emissions were reduced on TSR plots by factor 30 to 400. Spreading of Sphagnum spp. had only little effect on CH4 emissions during the first year of establishment. TSR also reduced CH4 production potential and methanogen abundance. Further, the response of CH4 fluxes to methanogen abundance was lower after TSR. This suggests that both reduction in labile substrate and in methanogen abundance contribute to near-zero CH4 emissions after TSR. These are the first field-scale results that demonstrate the efficiency of removing degraded topsoil to avoid high CH4 emissions after rewetting.


Subject(s)
Methane/analysis , Wetlands , Carbon Dioxide/analysis , Europe , Germany , Grassland , Paris , Soil
16.
Ambio ; 49(1): 324-336, 2020 Jan.
Article in English | MEDLINE | ID: mdl-30993578

ABSTRACT

Wetland restoration is considered an effective mitigation method for decreasing nitrogen (N) losses from agricultural land. However, when former cropland becomes rewetted, there is a risk that phosphorus (P) accumulated in soils will be released downstream. Here, we evaluate N and P retention in eight restored wetlands in Denmark monitored for 1 year using a mass balance approach. The wetlands represented different types, for instance, lakes and wet meadows, and ages (3-13 years). We also show the results from a long-term monitoring station established in 1973, located downstream a lake that was re-established in 2006. All restored wetlands removed total N (42-305 kg N ha-1 year-1), while some wetlands acted as source of total P and others as a sink (- 2.8 to 10 kg P ha-1 year-1). Our study confirms that restored wetlands are effective at removing N, whereas P can be released for several years after restoration.


Subject(s)
Phosphorus , Wetlands , Denmark , Nitrogen , Soil
17.
J Environ Qual ; 48(2): 362-375, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30951130

ABSTRACT

Integrated buffer zones (IBZs) have recently been introduced in the Northwestern Europe temperate zone to improve delivery of ecosystem services compared with the services associated with long-established vegetated buffer zones. A common feature of all the studied IBZ sites is that tile drainage, which previously discharged directly into the streams, is now intercepted within the IBZ. Specifically, the design of IBZs combines a pond, where soil particles present in drain water or surface runoff can be deposited, and a planted subsurface flow infiltration zone. Together, these two components should provide an optimum environment for microbial processes and plant uptake of nutrients. Nutrient reduction capacities, biodiversity enhancement, and biomass production functions were assessed with different emphasis across 11 IBZ sites located in Denmark, Great Britain, and Sweden. Despite the small size of the buffer zones (250-800 m) and thus the small proportion of the drained catchment (mostly <1%), these studies cumulatively suggest that IBZs are effective enhancements to traditional buffer zones, as they (i) reduce total N and P loads to small streams and rivers, (ii) act as valuable improved habitats for aquatic and amphibian species, and (iii) offer economic benefits by producing fast-growing wetland plant biomass. Based on our assessment of the pilot sites, guidance is provided on the implementation and management of IBZs within agricultural landscapes.


Subject(s)
Biodegradation, Environmental , Conservation of Natural Resources , Environmental Monitoring , Non-Point Source Pollution/prevention & control , Agriculture , Biomass , Ecosystem , Europe , Phosphorus/analysis , Plants , Rivers , Soil , Sweden , Water Movements , Wetlands
18.
Glob Chang Biol ; 25(5): 1591-1611, 2019 05.
Article in English | MEDLINE | ID: mdl-30628191

ABSTRACT

Climate change and human pressures are changing the global distribution and the extent of intermittent rivers and ephemeral streams (IRES), which comprise half of the global river network area. IRES are characterized by periods of flow cessation, during which channel substrates accumulate and undergo physico-chemical changes (preconditioning), and periods of flow resumption, when these substrates are rewetted and release pulses of dissolved nutrients and organic matter (OM). However, there are no estimates of the amounts and quality of leached substances, nor is there information on the underlying environmental constraints operating at the global scale. We experimentally simulated, under standard laboratory conditions, rewetting of leaves, riverbed sediments, and epilithic biofilms collected during the dry phase across 205 IRES from five major climate zones. We determined the amounts and qualitative characteristics of the leached nutrients and OM, and estimated their areal fluxes from riverbeds. In addition, we evaluated the variance in leachate characteristics in relation to selected environmental variables and substrate characteristics. We found that sediments, due to their large quantities within riverbeds, contribute most to the overall flux of dissolved substances during rewetting events (56%-98%), and that flux rates distinctly differ among climate zones. Dissolved organic carbon, phenolics, and nitrate contributed most to the areal fluxes. The largest amounts of leached substances were found in the continental climate zone, coinciding with the lowest potential bioavailability of the leached OM. The opposite pattern was found in the arid zone. Environmental variables expected to be modified under climate change (i.e. potential evapotranspiration, aridity, dry period duration, land use) were correlated with the amount of leached substances, with the strongest relationship found for sediments. These results show that the role of IRES should be accounted for in global biogeochemical cycles, especially because prevalence of IRES will increase due to increasing severity of drying events.


Subject(s)
Nutrients/analysis , Organic Chemicals/analysis , Rivers/chemistry , Biofilms/growth & development , Biological Availability , Climate , Climate Change , Geologic Sediments/chemistry , Nitrates/analysis , Plant Leaves/chemistry
19.
Environ Sci Technol ; 52(11): 6508-6517, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29733209

ABSTRACT

Integrated buffer zones (IBZs) represent a novel form of edge-of-field technology in Northwest Europe. Contrary to the common riparian buffer strips, IBZs collect tile drainage water from agricultural fields by combining a ditch-like pond (POND), where soil particles can settle, and a flow-through filter bed (FILTERBED) planted with Alnus glutinosa (L.), a European alder (black alder). The first experimental IBZ facility was constructed and thoroughly tested in Denmark for its capability to retain various nitrogen (N) and phosphorus (P) species within the first three years after construction. We calculated the water and nutrient budget for the total IBZ and for the two compartments, POND and FILTERBED, separately. Furthermore, a tracer experiment using sodium bromide was conducted in order to trace the water flow and estimate the hydraulic residence time in the FILTERBEDs. The monthly average removal efficiency amounted to 10-67% for total N and 31-69% for total P, with performance being highest during the warm season. Accordingly, we suggest that IBZs may be a valuable modification of dry buffer strips in order to mitigate the adverse impacts of high nutrient loading from agricultural fields on the aquatic environment.


Subject(s)
Nitrogen , Phosphorus , Agriculture , Denmark , Europe
20.
Sci Total Environ ; 625: 519-530, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29291566

ABSTRACT

A large part of the organic carbon in streams is transported by pulses of terrestrial dissolved organic carbon (tDOC) during hydrological events, which is more pronounced in agricultural catchments due to their hydrological flashiness. The majority of the literature considers stationary benthic biofilms and hyporheic biofilms to dominate uptake and processing of tDOC. Here, we argue for expanding this viewpoint to planktonic bacteria, which are transported downstream together with tDOC pulses, and thus perceive them as a less variable resource relative to stationary benthic bacteria. We show that pulse DOC can contribute significantly to the annual DOC export of streams and that planktonic bacteria take up considerable labile tDOC from such pulses in a short time frame, with the DOC uptake being as high as that of benthic biofilm bacteria. Furthermore, we show that planktonic bacteria efficiently take up labile tDOC which strongly increases planktonic bacterial production and abundance. We found that the response of planktonic bacteria to tDOC pulses was stronger in smaller streams than in larger streams, which may be related to bacterial metacommunity dynamics. Furthermore, the response of planktonic bacterial abundance was influenced by soluble reactive phosphorus concentration, pointing to phosphorus limitation. Our data suggest that planktonic bacteria can efficiently utilize tDOC pulses and likely determine tDOC fate during downstream transport, influencing aquatic food webs and related biochemical cycles.

SELECTION OF CITATIONS
SEARCH DETAIL
...