Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Mater ; 36(13): 6454-6463, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39005531

ABSTRACT

New energy storage methods are emerging to increase the energy density of state-of-the-art battery systems beyond conventional intercalation electrode materials. For instance, employing anion redox can yield higher capacities compared with transition metal redox alone. Anion redox in sulfides has been recognized since the early days of rechargeable battery research. Here, we study the effect of d-p overlap in controlling anion redox by shifting the metal d band position relative to the S p band. We aim to determine the effect of shifting the d band position on the electronic structure and, ultimately, on charge compensation. Two isostructural sulfides LiNaFeS2 and LiNaCoS2 are directly compared to the hypothesis that the Co material should yield more covalent metal-anion bonds. LiNaCoS2 exhibits a multielectron capacity of ≥1.7 electrons per formula unit, but despite the lowered Co d band, the voltage of anion redox is close to that of LiNaFeS2. Interestingly, the material suffers from rapid capacity fade. Through a combination of solid-state nuclear magnetic resonance spectroscopy, Co and S X-ray absorption spectroscopy, X-ray diffraction, and partial density of states calculations, we demonstrate that oxidation of S nonbonding p states to S2 2- occurs in early states of charge, which leads to an irreversible phase transition. We conclude that the lower energy of Co d bands increases their overlap with S p bands while maintaining S nonbonding p states at the same higher energy level, thus causing no alteration in the oxidation potential. Further, the higher crystal field stabilization energy for octahedral coordination over tetrahedral coordination is proposed to cause the irreversible phase transition in LiNaCoS2.

2.
J Am Chem Soc ; 144(23): 10119-10132, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35653701

ABSTRACT

Secondary Li-ion batteries have enabled a world of portable electronics and electrification of personal and commercial transportation. However, the charge storage capacity of conventional intercalation cathodes is reaching the theoretical limit set by the stoichiometry of Li in the fully lithiated structure. Increasing the Li:transition metal ratio and consequently involving structural anions in the charge compensation, a mechanism termed anion redox, is a viable method to improve storage capacities. Although anion redox has recently become the front-runner as a next-generation storage mechanism, the concept has been around for quite some time. In this perspective, we explore the contribution of anions in charge compensation mechanisms ranging from intercalation to conversion and the hybrid mechanisms between. We focus our attention on the redox of S because the voltage required to reach S redox lies within the electrolyte stability window, which removes the convoluting factors caused by the side reactions that plague the oxides. We highlight examples of S redox in cathode materials exhibiting varying degrees of anion involvement with a particular focus on the structural effects. We call attention to those with intermediate anion contribution to redox and the hybrid intercalation- and conversion-type structural mechanism at play that takes advantage of the positives of both mechanistic types to increase storage capacity while maintaining good reversibility. The hybrid mechanisms often invoke the formation of persulfides, and so a survey of binary and ternary materials containing persulfide moieties is presented to provide context for materials that show thermodynamically stable persulfide moieties.

3.
J Am Chem Soc ; 144(13): 5841-5854, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35333056

ABSTRACT

Electrode materials for Li+-ion batteries require optimization along several disparate axes related to cost, performance, and sustainability. One of the important performance axes is the ability to retain structural integrity though cycles of charge/discharge. Metal-metal bonding is a distinct feature of some refractory metal oxides that has been largely underutilized in electrochemical energy storage, but that could potentially impact structural integrity. Here LiScMo3O8, a compound containing triangular clusters of metal-metal bonded Mo atoms, is studied as a potential anode material in Li+-ion batteries. Electrons inserted though lithiation are localized across rigid Mo3 triangles (rather than on individual metal ions), resulting in minimal structural change as suggested by operando diffraction. The unusual chemical bonding allows this compound to be cycled with Mo atoms below a formally +4 valence state, resulting in an acceptable voltage regime that is appropriate for an anode material. Several characterization methods including potentiometric entropy measurements indicate two-phase regions, which are attributed through extensive first-principles modeling to Li+ ordering. This study of LiScMo3O8 provides valuable insights for design principles for structural motifs that stably and reversibly permit Li+ (de)insertion.

4.
J Am Chem Soc ; 142(14): 6737-6749, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32223192

ABSTRACT

Conventional Li-ion cathodes store charge by reversible intercalation of Li coupled to metal cation redox. There has been increasing interest in new materials capable of accommodating more than one Li per transition-metal center, thereby yielding higher charge storage capacities. We demonstrate here that the lithium-rich layered iron sulfide Li2FeS2 as well as a new structural analogue, LiNaFeS2, reversibly store ≥1.5 electrons per formula unit and support extended cycling. Ex situ and operando structural and spectroscopic data indicate that delithiation results in reversible oxidation of Fe2+ concurrent with an increase in the covalency of the Fe-S interactions, followed by reversible anion redox: 2 S2-/(S2)2-. S K-edge spectroscopy unequivocally proves the contribution of the anions to the redox processes. The structural response to the oxidation processes is found to be different in Li2FeS2 in contrast to that in LiNaFeS2, which we suggest is the cause for capacity fade in the early cycles of LiNaFeS2. The materials presented here have the added benefit of avoiding resource-sensitive transition metals such as Co and Ni. In contrast to Li-rich oxide materials that have been the subject of so much recent study and that suffer capacity fade and electrolyte degradation issues, the materials presented here operate within the stable potential window of the electrolyte, permitting a clearer understanding of the underlying processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...