Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Ann Clin Microbiol Antimicrob ; 23(1): 61, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965586

ABSTRACT

OBJECTIVES: The emergence of multidrug-resistant (MDR) Salmonella strains, especially resistant ones toward critically important antimicrobial classes such as fluoroquinolones and third- and fourth-generation cephalosporins, is a growing public health concern. The current study, therefore, aimed to determine the prevalence, and existence of virulence genes (invA, stn, and spvC genes), antimicrobial resistance profiles, and the presence of ß-lactamase resistance genes (blaOXA, blaCTX-M1, blaSHV, and blaTEM) in Salmonella strains isolated from native chicken carcasses in Egypt marketed in Mansoura, Egypt, as well as spotlight the risk of isolated MDR, colistin-, cefepime-, and levofloxacin-resistant Salmonella enterica serovars to public health. METHODS: One hundred fifty freshly dressed native chicken carcasses were collected from different poultry shops in Mansoura City, Egypt between July 2022 and November 2022. Salmonella isolation was performed using standard bacteriological techniques, including pre-enrichment in buffered peptone water (BPW), selective enrichment in Rappaport Vassiliadis broth (RVS), and cultivating on the surface of xylose-lysine-desoxycholate (XLD) agar. All suspected Salmonella colonies were subjected to biochemical tests, serological identification using slide agglutination test, and Polymerase Chain Reaction (PCR) targeting the invasion A gene (invA; Salmonella marker gene). Afterward, all molecularly verified isolates were screened for the presence of virulence genes (stn and spvC). The antimicrobial susceptibility testing for isolated Salmonella strains towards the 16 antimicrobial agents tested was analyzed by Kirby-Bauer disc diffusion method, except for colistin, in which the minimum inhibition concentration (MIC) was determined by broth microdilution technique. Furthermore, 82 cefotaxime-resistant Salmonella isolates were tested using multiplex PCR targeting the ß-lactamase resistance genes, including blaOXA, blaCTX-M1, blaSHV, and blaTEM genes. RESULTS: Salmonella enterica species were molecularly confirmed via the invA Salmonella marker gene in 18% (27/150) of the freshly dressed native chicken carcasses. Twelve Salmonella serotypes were identified among 129 confirmed Salmonella isolates with the most predominant serotypes were S. Kentucky, S. Enteritidis, S. Typhimurium, and S. Molade with an incidence of 19.4% (25/129), 17.1% (22/129), 17.1% (22/129), and 10.9% (14/129), respectively. All the identified Salmonella isolates (n = 129) were positive for both invA and stn genes, while only 31.8% (41/129) of isolates were positive for the spvC gene. One hundred twenty-one (93.8%) of the 129 Salmonella-verified isolates were resistant to at least three antibiotics. Interestingly, 3.9%, 14.7%, and 75.2% of isolates were categorized into pan-drug-resistant, extensively drug-resistant, and multidrug-resistant, respectively. The average MAR index for the 129 isolates tested was 0.505. Exactly, 82.2%, 82.2%, 63.6%, 51.9%, 50.4%, 48.8%, 11.6%, and 10.1% of isolated Salmonella strains were resistant to cefepime, colistin, cefotaxime, ceftazidime/clavulanic acid, levofloxacin, ciprofloxacin, azithromycin, and meropenem, respectively. Thirty-one out (37.8%) of the 82 cefotaxime-resistant Salmonella isolates were ß-lactamase producers with the blaTEM as the most predominant ß-lactamase resistance gene, followed by blaCTX-M1 and blaOXA genes, which were detected in 21, 16, and 14 isolates respectively). CONCLUSION: The high prevalence of MDR-, colistin-, cefepime-, and levofloxacin-resistant Salmonella serovars among Salmonella isolates from native chicken is alarming as these antimicrobials are critically important in treating severe salmonellosis cases and boost the urgent need for controlling antibiotic usage in veterinary and human medicine to protect public health.


Subject(s)
Anti-Bacterial Agents , Cefepime , Chickens , Colistin , Drug Resistance, Multiple, Bacterial , Levofloxacin , Microbial Sensitivity Tests , Salmonella enterica , Serogroup , Animals , Egypt , Salmonella enterica/drug effects , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Colistin/pharmacology , Levofloxacin/pharmacology , Cefepime/pharmacology , beta-Lactamases/genetics , Virulence Factors/genetics , Bacterial Proteins/genetics , Salmonella Infections, Animal/microbiology , Humans
2.
Mar Pollut Bull ; 202: 116391, 2024 May.
Article in English | MEDLINE | ID: mdl-38657491

ABSTRACT

Manzala Lake was sampled to assess the concentrations and possible ecological risks of heavy metals. The mean heavy metal levels in the muscles of Nile tilapia, Flathead grey mullets and African catfish were 0.01, 0.15 and 0.29 mg/kg, respectively, for mercury; 3.16, 4.25 and 4.74 mg/kg for arsenic; 1.01, 0.87 and 0.95 mg/kg for lead; and 0.05, 0.12 and 0.06 mg/kg for cadmium. The levels of heavy metals exceeded their maximum permissible limits in most samples. The EDIs of some metals were higher than their PTDIs or BMDLs. The THQs and TTHQs from metal intake were >1 for Hg and Cd. In addition, the TCR values of As in all fish species were higher than 1.0 × 10-4 indicating a potential health risks from consumption of fish species which need strict hygienic procedures to prevent fish contamination with heavy metals and ensure that their levels did not exceed the maximum permissible limits.


Subject(s)
Fishes , Lakes , Metals, Heavy , Water Pollutants, Chemical , Animals , Metals, Heavy/analysis , Egypt , Lakes/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring , Food Contamination/analysis , Risk Assessment , Carcinogens/analysis , Humans , Mercury/analysis
3.
BMC Microbiol ; 24(1): 41, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38287241

ABSTRACT

Listeria monocytogenes is an important foodborne pathogen that incorporated into many serious infections in human especially immunocompromised individuals, pregnant women, the elderly, and newborns. The consumption of food contaminated with such bacteria is considered a source of potential risk for consumers. Therefore, a total of 250 poultry purchased in highly popular poultry stores besides 50 swabs from workers hands in the same stores, in Mansoura City had been tested for the L. monocytogenes prevalence, virulence genes, and antibiotic resistance profile illustrating the health hazards from such poultry. The L. monocytogenes were recovered from 9.6% of poultry samples while not detected from workers hand swabs. The antimicrobial susceptibility of 24 L. monocytogenes strains against 24 antibiotics of seven different classes revealed high susceptibility rates to erythromycin (79.17%), streptomycin (66.67%), gentamycin (66.67%), vancomycin (58.33%), chloramphenicol (58.33%) and cefotaxime (41.67%). The majority (79.2%) of L. monocytogenes were classified as multidrug resistant strains with high resistance to tetracyclines and ß-lactams antibiotics while 16.7% of the strains were categorized as extensively resistant ones. The iap virulence-specific determination gene had been detected in all recovered L. monocytogenes isolates while 83.33 and 70.83% of the isolates harbored hylA and actA genes. In addition, the study confirmed the capability of most L. monocytogenes isolates for biofilm formation by moderate to strong production and the quantitative risk assessment illustrated the risk of developing listeriosis as the risk value exceeded 100. The current results illustrate that poultry meat can be a source of pathogenic antibiotic resistant strains that may cause infection with limited or no treatment in immunosuppressed consumers via the food chain.


Subject(s)
Listeria monocytogenes , Infant, Newborn , Pregnancy , Animals , Female , Humans , Aged , Poultry , Anti-Bacterial Agents/pharmacology , Public Health , Egypt/epidemiology , Virulence Factors/genetics , Food Microbiology
4.
Iran J Microbiol ; 15(2): 208-218, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37193241

ABSTRACT

Background and Objectives: Concomitant carriage of blaNDM-1 and plasmid mediated quinolone resistance determinants (PMQRs) by multi drug resistant (MDR) Klebsiella pneumoniae (K. pneumoniae) has increased globally, often related to their presence on transmissible plasmids. In this study, we hypothesized the presence of blaNDM-1 and PMQRs on a single conjugative plasmid that circulates among K. pneumoniae strains isolated from Assiut University Hospital. Materials and Methods: Twenty-two clinical MDR K. pneumoniae strains harboring both blaNDM-1 and PMQRs were genotyped using pulsed field gel electrophoresis. Horizontal transfer of blaNDM-1 and PMQRs was evaluated by conjugation and trans-conjugants were screened for the presence of both genes and integron by PCR. Trans-conjugant's plasmid DNA bands were purified using agarose gel electrophoresis and different DNA bands were screened for blaNDM-1 and PMQRs. Plasmids carrying blaNDM-1 and PMQRs were typed by PCR based replicon typing. Results: All MDR K. pneumoniae contained class 1 integron and belonged to 15 pulsotypes. BlaNDM-1 and PMQRs were co-transferred in each conjugation process. Multiple replicons (5-9 types) were detected in each trans-conjugant; with IncFIIK and IncFIB-KQ replicons being common among all trans-conjugants. Both blaNDM-1 and PMQRs were detected on a pKpQIL-like multi-replicon plasmid that was present in all K. pneumoniae strains. Conclusion: In view of these results, the presence of blaNDM-1 and PMQRs on pKpQIL-like plasmid that existed in multiple unrelated K. pneumoniae isolates is highly suggestive of the circulation of pKpQIL-like MDR plasmids in our hospitals. Moreover, carriage of integrons by the-circulating MDR plasmids increases the risk of dissemination of antimicrobial resistance among pathogens.

5.
Foods ; 11(18)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36141052

ABSTRACT

The current study aimed to investigate the presence of Salmonella spp. prevalence in buffalo meat in Egypt, along with studying the antimicrobial susceptibility of the recovered isolates. Salmonella spp. was detected in 25% of tested buffalo meat. A total of 53 (100%) isolates were genetically verified by PCR as Salmonella, based on the detection of the invA gene. The stn and hilA genes were detected in 71.7% (38/53), and 83.0% (44/53) of the recovered isolates, respectively. Salmonella Enteritidis (11/53; 20.7%) was the most commonly isolated serovar, followed by S. Typhimurium (9/53; 17%), S. Montevideo (6/53; 11.3%), meanwhile, S. Chester, S. Derby, S. Papuana, and S. Saintpaul were the least commonly identified serovars (a single strain for each; 1.9%). Among the 16 antimicrobials tested, amikacin, imipenem, gentamicin, cefotaxime, meropenem, ciprofloxacin, and enrofloxacin were the most effective drugs, with bacterial susceptibility percentages of 98.1%, 94.3%, 92.5%, 86.8%, 83.0%, 73.6%, and 69.8%, respectively. Meanwhile, the least effective ones were erythromycin, streptomycin, clindamycin, cefepime, and nalidixic acid, with bacterial resistance percentages of 100%, 98.1%, 88.7%, 77.4%, and 66%, respectively. Interestingly, the high contamination level of Egyptian buffalo meat with multidrug-resistant Salmonella (79.2%; 42/53) can constitute a problem for public health. Therefore, programs to control Salmonella contamination are needed in Egypt.

6.
Environ Sci Pollut Res Int ; 29(36): 54359-54377, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35298798

ABSTRACT

Listeria monocytogenes (L. monocytogenes) is frequently detected in ruminants, especially dairy cattle, and associated with the sporadic and epidemic outbreak of listeriosis in farms. In this epidemiological study, the prevalence, virulence, antibiotic resistance profiles, and genetic diversity of L. monocytogenes in three Egyptian dairy cattle farms were investigated. The risk factors associated with the fecal shedding of L. monocytogenes were analyzed. The L. monocytogenes strains from the three farms were categorized into distinct genotypes based on sampling site and sample type through enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR). A total of 1896 samples were collected from animals, environments, and milking equipment in the three farms. Results revealed that 137 (7.23%) of these samples were L. monocytogenes positive. The prevalence of L. monocytogenes in the animal samples was high (32.1%), and the main environmental source of prevalent genotypes in the three farms was silage. For all sample types, L. monocytogenes was more prevalent in farm I than in farms II and III. Risk factor analysis showed seasonal variation in production hygiene. For all sample types, L. monocytogenes was significantly more prevalent in winter than in spring and summer. The level of L. monocytogenes fecal shedding was high likely because of increasing age, number of parities, and milk yield in dairy cattle. Two virulence genes, namely, hlyA & prfA, were also detected in 93 strains, whereas only one of these genes was found in 44 residual strains. Conversely, iap was completely absent in all strains. The strains exhibited phenotypic resistance to most of the tested antibiotics, but none of them was resistant to netilmicin or vancomycin. According to sample type, the strains from the animal samples were extremely resistant to amoxicillin (95.2%, 80/84) and cloxacillin (92.9%, 78/84). By comparison, the strains from the environmental samples were highly resistant to cefotaxime (86.95%, 20/23). Furthermore, 25 multi-antibiotic resistance (MAR) patterns were observed in L. monocytogenes strains. All strains had a MAR index of 0.22-0.78 and harbored antibiotic resistance genes, including extended-spectrum ß-lactamase (blaCTX-M [92.7%] and blaDHA-1 [66.4%]), quinolones (qnrS [91.2%], qnrA [58.4%], parC [58.4%], and qnrB [51%]), macrolides (erm[B] [76.6%], erm(C) [1.5%], and msr(A) [27%]), trimethoprim (dfrD [65.7%]), and tetracyclines (tet(M) [41.6%], tet(S) [8%], and int-Tn [26.3%]). ERIC-PCR confirmed that the strains were genetically diverse and heterogeneous. A total of 137 isolated L. monocytogenes strains were classified into 22 distinct ERIC-PCR groups (A-V). Among them, ERIC E (10.2%) was the most prevalent group. These results indicated that environment and milking equipment served as reservoirs and potential transmission ways of virulent and multidrug-resistant L. monocytogenes to dairy animals, consequently posing threats to public health. Silage is the main environmental source of prevalent genotypes on all three farms. Therefore, hygienic measures at the farm level should be developed and implemented to reduce L. monocytogenes transmission inside dairy cattle farms.


Subject(s)
Listeria monocytogenes , Animals , Anti-Bacterial Agents/pharmacology , Cattle , Egypt , Enterobacteriaceae/genetics , Farms , Genetic Variation , Polymerase Chain Reaction
7.
Infect Drug Resist ; 13: 3485-3499, 2020.
Article in English | MEDLINE | ID: mdl-33116668

ABSTRACT

PURPOSE: The last few decades have witnessed a rapid and global increase in multidrug-resistant bacteria (MDR) emergence. METHODS: The aim of the current study is to isolate the most common MDR bacteria from dairy farms and beef slaughterhouses followed by evaluation of their antimicrobial resistance pattern and assessment of the antibacterial activity of AgNPs-H2O2 as an alternative to conventional antibiotics. In this regard, 200 samples were collected from two dairy farms and one beef slaughterhouse located in Dakhliya Governorate, Egypt. RESULTS: Interestingly, out of 120 collected samples from dairy farms, the prevalence of the isolated strains was 26.7, 23.3, 21.7, 16.7, and 11.7% for S. typhimurium, E. coli O157:H7, L. monocytogenes, K. pneumoniae and P. aeruginosa, respectively. Meanwhile, the overall prevalence was 30, 25, 22.5, 17.5, and 5% for E. coli O157:H7, L. monocytogenes, S. typhimurium, P. aeruginosa, and K. pneumoniae, respectively, for the 80 samples collected from a beef slaughterhouse. The antimicrobial susceptibility pattern elucidated that all isolated strains exhibited resistance to at least four of the tested antimicrobials, with multiple-antibiotic resistance index values (MAR) ranging between 0.44 and 0.88. Furthermore, the commercial AgNPs-H2O2 product was characterized by transmission electron microscopy (TEM) and zeta potential that showed spherical particles with a surface charge of -0.192 mV. The antimicrobial activity of synergized nano-silver (AgNP) with H2O2 product toward MDR strains was assessed via measuring minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and time-kill curve. CONCLUSION: The present data report high prevalence rates of MDR pathogens in dairy farms and abattoirs. More importantly, AgNPs-H2O2 exerted broad-spectrum bactericidal activity toward MDR bacterial strains, suggesting their promising usage as safe, ecofriendly, cost-effective antibacterial agents. To our knowledge, this study is a pioneer in investigating the potential alternative antimicrobial role of silver nanoparticles for control of multiple drug-resistant pathogens in Egypt.

8.
Front Microbiol ; 11: 1375, 2020.
Article in English | MEDLINE | ID: mdl-32636828

ABSTRACT

BACKGROUND: Neonatal sepsis is a nuisance to clinicians and medical microbiologists, particularly those cases caused by Klebsiella pneumoniae. Thus, we aimed at investigating the profile and mechanisms of antibiotic resistance and the clonal relationships between K. pneumoniae isolated from neonates at the largest tertiary care hospital's neonatal intensive care units (NICUs) in Minia, Egypt. METHODS: This study comprised 156 neonates diagnosed with culture-proven sepsis from February 2019 to September 2019, at a major NICU of Minia City. All K. pneumoniae isolates were collected and characterized by antimicrobial profile, resistance genotype, and pulsed-field gel electrophoresis typing. RESULTS: Twenty-four K. pneumoniae isolates (15.3%) were collected out of the 156 sepsis diagnosed neonates. These samples showed extensive drug resistance (XDR) to most of the tested antimicrobials, except fluoroquinolones. All the K. pneumoniae isolates possessed bla VIM and bla NDM carbapenemase genes, while bla KPC gene was detected in 95.8%. Considering extended-spectrum ß-lactamases genes, bla CTX-M was found in all the isolates and bla OXA-1 gene in 75% of them. The plasmid-mediated quinolone resistance gene qnrS, was predominantly found among our isolates in comparison to qnrB or qnrA. A moderate degree of clonal relatedness was observed between the isolates. CONCLUSION: To the best of our knowledge, this the first report of an alarming occurrence of XDR among K. penumoniae isolates recovered from neonatal sepsis in Egypt. Our data necessitate proper antimicrobial stewardship as the choices will be very limited.

9.
Environ Sci Pollut Res Int ; 27(24): 30716-30728, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32468379

ABSTRACT

Recent developments in the nanotechnology field have created opportunities to design new biomaterials for Staphylococcus aureus biofilm eradication. These biomaterials including disinfectant-loaded nanoparticles could overcome the limitations of conventional disinfectants. The objective of this study was to assess the biocidal activity of five commercial disinfectants (DC&R®, VirkonS®, TH4++, Tek-Trol, and peracetic acid) alone and as with silver and copper nanocomposites on S. aureus biofilm at different concentrations and exposure times. Consequently, 227 samples were collected from two broiler farms, two-layer farms, and three abattoirs at El-Dakahlia Province, Egypt, during summer 2018. The samples were collected from birds as well as the surrounding environment. S. aureus strains were isolated and biofilm producers were phenotypically evaluated by Congo red agar (CRA) test. Besides, 4 biofilm-associated genes including bap, fnbA, cna, and ebps were genotypically detected by PCR technology. Out of 227 collected samples, 141 (62.1%) strains were identified as S. aureus, while 127 strains (90.1%) were S. aureus biofilm producers for all examined samples except for hand swabs of abattoir workers. The prevalence of fnbA and bap genes was 79.5% (101/127) and 20.5% (26/127), respectively but, no strains harbored cna or ebps genes. Tested nanocomposites were prepared using an aqueous solution of metal salts such as copper sulfate and silver nitrate and added to the same amount of disinfectant solution. The obtained nanocomposites were characterized by transmission electron microscopy (TEM) and zeta potential which showed spherical and elongated particles and with a surface charge of disinfectants-silver and copper nanocomposites-of 2.92 and 3.43 mV, respectively. Complete eradication of S. aureus biofilm was observed after treatment with disinfectants loaded onto silver (AgNPs) and copper (CuNPs) nanoparticles in varying concentrations as well as at different exposure times in comparing to disinfectants alone. Our results exhibited the potential applications of disinfectant nanocomposites in complete eradication of S. aureus biofilm in farms and abattoirs without developing of disinfectant resistant bacteria.


Subject(s)
Disinfectants , Metal Nanoparticles , Nanoparticles , Abattoirs , Animals , Biofilms , Chickens , Copper , Egypt , Farms , Humans , Poultry , Staphylococcus aureus
10.
Microorganisms ; 8(3)2020 Mar 14.
Article in English | MEDLINE | ID: mdl-32183339

ABSTRACT

Foodborne infection with Listeria causes potentially life-threatening disease listeriosis. Listeria monocytogenes is widely recognized as the only species of public health concern, and the closely related species Listeria innocua is commonly used by the food industry as an indicator to identify environmental conditions that allow for presence, growth, and persistence of Listeria spp. in general. In our study, we analyze the occurrence of Listeria spp. in a farm-to-fork approach in a poultry production chain in Egypt and identify bacterial entry gates and transmission systems. Prevalence of Listeria innocua at the three production stages (farm, slaughterhouse, food products) ranged from 11% to 28%. The pathogenic species Listeria monocytogenes was not detected, and Listeria innocua strains under study did not show genetic virulence determinants. However, the close genetic relatedness of Listeria innocua isolates (maximum 63 SNP differences) indicated cross-contamination between all stages from farm to final food product. Based on these results, chicken can be seen as a natural source of Listeria. Last but not least, sanitary measures during production should be reassessed to prevent bacterial contamination from entering the food chain and to consequently prevent human listeriosis infections. For this purpose, surveillance must not be restricted to pathogenic species.

11.
J Med Microbiol ; 68(12): 1787-1792, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31661052

ABSTRACT

Introduction. PFGE is the 'gold standard' method for bacterial subtyping. However, many strains are non-typable by this approach because of DNA degradation by nucleases action.Aim. To evaluate a modified PFGE protocol for typing nosocomial isolates of Klebsiella pneumoniae.Methods. Twenty- five K. pneumoniae isolates previously exposed to DNA degradation were used to optimize an extraction method for elimination of DNases activity before applying Xba1 enzyme. Introducing of sodium dodecyl sulfate (SDS) in different concentrations to the extraction buffer was evaluated for protecting genomic DNA molecule from degradation by nucleases.Results. Addition of 3 % SDS in combination with 3 % N-lauryl sarcosine to the extraction buffer was found to reduce the previously experienced nuclease activity. Pre-examination of plug quality prior to the digestion phase could efficiently reduce the expense of the wasted enzyme.Conclusion. We have successfully devised a PFGE protocol that enhanced the typeability of nosocomial K. pneumoniae.


Subject(s)
Bacterial Typing Techniques/methods , Cross Infection/microbiology , DNA, Bacterial/metabolism , Electrophoresis, Gel, Pulsed-Field/methods , Klebsiella pneumoniae/classification , Klebsiella pneumoniae/genetics
12.
BMC Vet Res ; 15(1): 124, 2019 Apr 27.
Article in English | MEDLINE | ID: mdl-31029108

ABSTRACT

BACKGROUND: This study aimed to survey the prevalence, antimicrobial resistance, and virulence-associated genes of Salmonella enterica recovered from broiler chickens and retail shops at El-Sharkia Province in Egypt. Salmonella virulence factors were determined using the polymerase chain reaction assays targeting the invA, csgD, hilC, bcfC, stn, avrA, mgtC, ompF, sopE1 and pefA genes. RESULTS: One hundred tweenty out of 420- samples from broiler chickens' cloacal swabs, farm environmental samples, and freshly dressed whole chicken carcasses were positive Salmonella species. The isolates were serotyped as S. Enteritidis as the most dominant serotypes. Interestingly, none of the isolates were resistant to imipenem. The multidrug resistance was determined in 76.7% of the isolates with multidrug antibiotic resistance index of 0.2-0.6. Eight virulence genes (invA, csgD, hilC, stn, bcfC, mgtC, avrA, and ompf) were characterized among 120 S. enterica isolates with variable frequencies, while sopE1and pefA genes that were completely absent in all isolates. Based on the combination of presence and absence of virulence genes, the most common genetic profile (P7, 30%) was invA and csgD genes. CONCLUSION: S. Enteritidis and S. Typhimurium were the most common identified serotypes in the examined sources. Circulation of such strains in broiler farms required introducing special biosecurity and biocontrol measures for control of Salmonella. Such measures might limit the adverse effects of antibiotics and ensure the safety of the environment and animal-derived food.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Food Microbiology , Meat/microbiology , Salmonella Infections, Animal/microbiology , Salmonella enterica/drug effects , Animals , Chickens , Egypt/epidemiology , Genotype , Housing, Animal , Salmonella Infections, Animal/epidemiology , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Salmonella enterica/pathogenicity , Virulence
13.
Int J Occup Environ Health ; 24(1-2): 55-60, 2018.
Article in English | MEDLINE | ID: mdl-30222073

ABSTRACT

Background Occupational hazards are the leading cause of morbidity and mortality among abattoirs personnel and animal workers. These hazards result from direct or indirect exposure to potential infection and several distressing events during routine procedures. Objectives To serologically investigate the potential occupational brucellosis hazard at Egyptian abattoirs. To provide an insight on the needed biosafety practices that should be implemented to mitigate the spread of occupational brucellosis among abattoir workers. Methods Two hundred and thirty (n = 230) blood samples were collected from animals in two Egyptian abattoirs. The rose Bengal test was used to evaluate the seroprevalence of Brucella in abattoir animals. A questionnaire was distributed among abattoir personnel to address biosafety gaps and deficiencies as a cause of occupational brucellosis. Results The overall seroprevalence of Brucella using the rose Bengal test was 75.2% in the two targeted abattoirs. It was obvious that there are gaps of malpractices and inconvenient behavior among individuals of the targeted community. Conclusions The current findings reveal the missing role of concerned authorities and lack of written safety policy. The data highlights the need for further research, including isolation and characterization of the causative agents, and reliable epidemiological studies.


Subject(s)
Abattoirs , Brucellosis/epidemiology , Occupational Exposure , Organizational Culture , Safety Management/organization & administration , Animals , Brucellosis/blood , Brucellosis/veterinary , Cattle , Egypt , Humans , Male , Occupational Diseases , Occupational Exposure/prevention & control , Personal Protective Equipment , Risk Factors , Seroepidemiologic Studies , Surveys and Questionnaires
14.
J Nat Sci Biol Med ; 9(1): 23-26, 2018.
Article in English | MEDLINE | ID: mdl-29456388

ABSTRACT

BACKGROUND: This study investigates the analgesic properties of the aqueous extracts of Nigella sativa and Eucheuma cottonii in mice. The analgesic properties of both extracts were evaluated in an experimental model of acetic acid-induced writhing test. MATERIALS AND METHODS: The mice were divided into four different groups and received the test extracts and the standard drug (aspirin) for 14 days via force-feeding. On day 15, the mice were injected with 5% acetic acid, and the number of abdominal constriction and elongation of hind limb (writhes) were counted for 20 min. RESULTS: The numbers of writhes were counted starting after 5 min of the acetic acid injection. The N. sativa extracts significantly reduced the number of writhes as compared to the control group. Both of the extracts revealed a comparable result as referred to the aspirin effects in the mice. CONCLUSIONS: These findings indicate that N. sativa and E. cottonii may possess protective active constituent that is effective in reducing the sensation of pain in mice.

15.
J Med Microbiol ; 66(5): 628-634, 2017 May.
Article in English | MEDLINE | ID: mdl-28485710

ABSTRACT

PURPOSE: Multidrug-resistant Klebsiella pneumoniae is a common nosocomial pathogen that plays an important role in ventilator-associated pneumonia (VAP). This study aimed to define the clonal relatedness of K. pneumoniae strains isolated from paediatric VAP in addition to those isolated from environmental samples. METHODOLOGY: This study included 19 clinical and 4 environmental K. pneumoniae isolates recovered from the paediatric intensive care unit (PICU) in Assiut University Children's Hospital. The K. pneumoniae isolates were confirmed by biotyping using API strips and subjected to antimicrobial susceptibility testing. The genes coding K1 and K2 capsular types were detected by PCR. The clonal relationships between the K. pneumoniae isolates were determined by pulsed-field gel electrophoresis (PFGE). RESULTS: Ten resistotypes were detected among all the K. pneumoniae isolates, while PFGE identified seventeen K. pneumoniae pulsotypes. Similar PFGE patterns were found between environmental and clinical isolates and between isolates recovered from different patients, suggesting the circulation of K. pneumoniae pathogens in the PICU and the role of the environment in the spread of infection. No correlation was found between the resistotypes and pulsotypes of the K. pneumoniae isolates. PFGE showed higher discriminatory power for the typing of nosocomial K. pneumoniae [Simpson's diversity index (DI)=0.96] than resistotyping (DI=0.72). CONCLUSION: As far as we know, this is the first report of the isolation of the same multidrug-resistant (MDR) K. pneumoniae pulsotype from patients and environmental samples in the same hospital ward in Egypt. This study provides a step on the way to understanding the genotyping and epidemiology of MDR K. pneumoniae for enhanced prevention of bacterial transmission.


Subject(s)
Klebsiella Infections/epidemiology , Klebsiella pneumoniae/genetics , Pneumonia, Ventilator-Associated/epidemiology , Pneumonia, Ventilator-Associated/microbiology , Anti-Bacterial Agents/pharmacology , Bacterial Capsules/genetics , Cross Infection/microbiology , DNA, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics , Egypt/epidemiology , Electrophoresis, Gel, Pulsed-Field , Genotype , Humans , Klebsiella Infections/microbiology , Klebsiella Infections/transmission , Klebsiella pneumoniae/classification , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Microbial Sensitivity Tests , Molecular Typing/methods , Multilocus Sequence Typing/methods , Pneumonia, Ventilator-Associated/diagnosis , Polymerase Chain Reaction , beta-Lactamases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...