Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Blood Res ; 13(2): 61-70, 2023.
Article in English | MEDLINE | ID: mdl-37214647

ABSTRACT

Sickle Cell Disease (SCD) is one of the most inherited hematologic diseases affecting humans. Clinically, there is a progressive multiorgan failure and increased mortality in severe cases. The highest prevalence is in West Africa, India, the Mediterranean region, and Middle East countries. Hydroxyurea was the primary drug available for SCD and remains first-line therapy for patients with SCD. Three additional drug therapies, L-glutamine, Voxelotor, and Crizanlizumab, have been approved as adjunctive agents. However, none of these treatments are curative. Effective cell-based therapies are available, such as red blood cell (RBC) exchange and the only curative therapy is hematopoietic stem cell transplantation (HSCT). Gene-editing now shows promise in treating SCD and the ß-thalassemias. Recent clinical trials have proven that this therapeutic strategy is effective, however costly. Despite the availability of safe and effective drug treatments, questions focusing on the overall value of these drugs exist in light of rising healthcare costs including hospitalizations and medical interventions. Herein, we report a cost-effective evaluation that can guide future efforts in making decisions towards HSCT as cell therapy treatment in SCD patients.

2.
AIDS ; 37(1): 19-32, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36399361

ABSTRACT

OBJECTIVES: Given the success of combination antiretroviral therapy (cART) in treating HIV viremia, drug toxicity remains an area of interest in HIV research. Despite newer integrase strand transfer inhibitors (InSTIs), such as dolutegravir (DTG) and raltegravir (RAL), having excellent clinical tolerance, there is emerging evidence of off-target effects and toxicities. Although limited in number, recent reports have highlighted the vulnerability of mitochondria to these toxicities. The aim of the present study is to quantify changes in cellular and mitochondrial health following exposure to current cART regimens at pharmacological concentrations. A secondary objective is to determine whether any cART-associated toxicities would be modulated by human telomerase reverse transcriptase (hTERT). METHODS: We longitudinally evaluated markers of cellular (cell count, apoptosis), and mitochondrial health [mitochondrial reactive oxygen species (mtROS), membrane potential (MMP) and mass (mtMass)] by flow cytometry in WI-38 human fibroblast with differing hTERT expression/localization and peripheral blood mononuclear cells. This was done after 9 days of exposure to, and 6 days following the removal of, seven current cART regimens, including three that contained DTG. Mitochondrial morphology was assessed by florescence microscopy and quantified using a recently developed deep learning-based pipeline. RESULTS: Exposure to DTG-containing regimens increased apoptosis, mtROS, mtMass, induced fragmented mitochondrial networks compared with non-DTG-containing regimens, including a RAL-based combination. These effects were unmodulated by telomerase expression. All effects were fully reversible following removal of drug pressure. CONCLUSION: Taken together, our observations indicate that DTG-containing regimens negatively impact cellular and mitochondrial health and may be more toxic to mitochondria, even among the generally well tolerated InSTI-based cART.


Subject(s)
HIV Infections , Leukocytes, Mononuclear , Humans , HIV Infections/drug therapy , Immune Tolerance , Fibroblasts
3.
Neurochem Res ; 2019 Nov 12.
Article in English | MEDLINE | ID: mdl-31713708

ABSTRACT

The aim of the present study was to examine the neuroprotective potential of pioglitazone via activation of Nrf2/ARE-dependent HO-1 signaling pathway in chronic neuroinflammation and progressive neurodegeneration mouse model induced by lipopolysaccharide (LPS). After assessing spatial memory, anxiety and motor-coordination, TH+ neurons in substantia nigra (SN) were counted. The oxidative stress marker carbonyl protein levels and HO-1 enzyme activity were also evaluated. RT-qPCR was conducted to detect HO-1, Nrf2 and NF-κp65 mRNA expression levels and Nrf2 transcriptional activation of antioxidant response element (ARE) of HO-1 was investigated. Pioglitazone ameliorated LPS-induced dopaminergic neuronal loss, as well as mitigated neurobehavioral impairments. It enhanced Nrf2 mRNA expression, and augmented Nrf2/ARE-dependent HO-1 pathway activation by amplifying HO-1 mRNA expression. Moreover, it induced a significant decrease in NF-κB p65 mRNA expression, while reducing carbonyl protein levels and restoring the HO-1 enzyme activity. Interestingly, LPS induced Nrf2/antioxidant response element (ARE) of HO-1 activation, ultimately resulting in slight enhanced HO-1 mRNA expression. However, LPS elicited decrease in HO-1 enzyme activity. Zinc protoporphyrin-IX (ZnPPIX) administrated with pioglitazone abolished its effects in the LPS mouse model. The study results demonstrate that coordinated activation of Nrf2/ARE-dependent HO-1 pathway defense mechanism by the PPARγ agonist pioglitazone mediated its neuroprotective effects.

4.
Mol Neurobiol ; 53(2): 1220-1228, 2016 Mar.
Article in English | MEDLINE | ID: mdl-25601181

ABSTRACT

Methylene blue (MB) phase II clinical trials reported improvements in cognitive functions of Alzheimer's disease (AD) patients. Regarding MB mechanism of action, its antioxidant and mitochondrial protective effects have been previously described. In relation to AD, it has been recently reported that MB reduced amyloid beta (Aß) levels in AD models. The mitochondrial enzyme amyloid-binding alcohol dehydrogenase (ABAD) has been shown to bind Aß inducing mitochondrial dysfunction, providing a direct relation between Aß toxicity and mitochondrial dysfunction occurring in AD. Since it has been reported that inhibiting ABAD protects mitochondrial functions and prevents Aß-induced toxicity, the aim of the current study was to investigate if the protective effects of MB could be associated with an effect on ABAD levels and functions. The current study shows that MB is able to enhance cell viability, reduce both reactive oxygen species levels and importantly Aß oligomers in a lipopolysaccharide (LPS) mouse model. Interestingly, ABAD levels were increased in the brains of the LPS mouse model and MB treatment was able to reduce its levels. Given that regulation of the estradiol level is a well-established function of ABAD, brain estradiol level was compared in LPS mouse model and in MB-treated mice. The results of the current study show that MB treatment is able to improve significantly the LPS-induced decrease of estradiol levels in mice brains, indicating its ability to modulate both levels and function of ABAD. These results give a new insight to possible mechanisms of MB in AD.


Subject(s)
3-Hydroxyacyl CoA Dehydrogenases/metabolism , Alcohol Dehydrogenase/metabolism , Alzheimer Disease/enzymology , Amyloid beta-Peptides/metabolism , Brain/enzymology , Inflammation/pathology , Methylene Blue/pharmacology , Mitochondria/enzymology , Alzheimer Disease/pathology , Animals , Brain/pathology , Cell Survival/drug effects , Cerebral Cortex/pathology , Disease Models, Animal , Estradiol/metabolism , Lipopolysaccharides , Male , Mice , Mitochondria/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...