Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
BMC Microbiol ; 23(1): 300, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872476

ABSTRACT

BACKGROUND: Urinary tract infections represent one of the most frequent hospital and community-acquired infections with uropathogenic Escherichia coli (UPEC) being the main causative agent. The global increase in the emergence of multidrug-resistant (MDR) UPEC necessitates exploring novel approaches. Repurposing natural products as anti-quorum sensing (QS) agents to impede bacterial virulence is gaining momentum nowadays. Hence, this study investigates the anti-QS potentials of carvacrol, cinnamaldehyde, and eugenol against E. coli isolated from urine cultures of Egyptian patients. RESULTS: Antibiotic susceptibility testing was performed for 67 E. coli isolates and 94% of the isolates showed MDR phenotype. The usp gene was detected using PCR and accordingly, 45% of the isolates were categorized as UPEC. Phytochemicals, at their sub-inhibitory concentrations, inhibited the swimming and twitching motilities of UPEC isolates, with eugenol showing the highest inhibitory effect. The agents hindered the biofilm-forming ability of the tested isolates, at two temperature sets, 37 and 30 °C, where eugenol succeeded in significantly inhibiting the biofilm formation by > 50% at both investigated temperatures, as compared with untreated controls. The phytochemicals were shown to downregulate the expression of the QS gene (luxS) and critical genes related to motility, asserting their anti-QS potential. Further, the combinatory activity of the phytoproducts with five antibiotics was assessed by checkerboard assay. The addition of the phytoproducts significantly reduced the minimum inhibitory concentrations of the antibiotics and generated several synergistic or partially synergistic combinations, some of which have not been previously explored. CONCLUSIONS: Overall, carvacrol, cinnamaldehyde, and eugenol could be repurposed as potential anti-QS agents, which preferentially reduce the QS-based communication and attenuate the cascades of gene expression, thus decreasing the production of virulence factors in UPEC, and eventually, subsiding their pathogenicity. Furthermore, the synergistic combinations of these agents with antibiotics might provide a new perspective to circumvent the side effects brought about by high antibiotic doses, thereby paving the way for overcoming antibiotic resistance.


Subject(s)
Escherichia coli Infections , Urinary Tract Infections , Uropathogenic Escherichia coli , Humans , Eugenol/pharmacology , Eugenol/therapeutic use , Egypt , Anti-Bacterial Agents/chemistry , Virulence Factors/genetics , Virulence Factors/metabolism , Urinary Tract Infections/microbiology , Escherichia coli Infections/microbiology
2.
Ann Clin Microbiol Antimicrob ; 22(1): 82, 2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37689686

ABSTRACT

BACKGROUND: Egypt has witnessed elevated incidence rates of multidrug-resistant Klebsiella pneumoniae infections in intensive care units (ICUs). The treatment of these infections is becoming more challenging whilst colistin-carbapenem-resistant K. pneumoniae is upsurging. Due to the insufficiently available data on the genomic features of colistin-resistant K. pneumoniae in Egypt, it was important to fill in the gap and explore the genomic characteristics, as well as the antimicrobial resistance, the virulence determinants, and the molecular mechanisms of colistin resistance in such a lethal pathogen. METHODS: Seventeen colistin-resistant clinical K. pneumoniae isolates were collected from ICUs in Alexandria, Egypt in a 6-month period in 2020. Colistin resistance was phenotypically detected by modified rapid polymyxin Nordmann/Poirel and broth microdilution techniques. The isolates susceptibility to 20 antimicrobials was determined using Kirby-Bauer disk diffusion method. Whole genome sequencing and bioinformatic analysis were employed for exploring the virulome, resistome, and the genetic basis of colistin resistance mechanisms. RESULTS: Out of the tested K. pneumoniae isolates, 82.35% were extensively drug-resistant and 17.65% were multidrug-resistant. Promising susceptibility levels towards tigecycline (88.24%) and doxycycline (52.94%) were detected. Population structure analysis revealed seven sequence types (ST) and K-types: ST383-K30, ST147-K64, ST17-K25, ST111-K63, ST11-K15, ST14-K2, and ST525-K45. Virulome analysis revealed yersiniabactin, aerobactin, and salmochelin siderophore systems in ˃ 50% of the population. Hypervirulence biomarkers, iucA (52.94%) and rmpA/A2 (5.88%) were detected. Extended-spectrum ß-lactamase- and carbapenemase-producers accounted for 94.12% of the population, with blaCTX-M-15, blaNDM-5, and blaOXA-48 reaching 64.71%, 82.35%, and 82.35%, respectively. Chromosomal alterations in mgrB (82.35%) were the most prevailing colistin resistance-associated genetic change followed by deleterious mutations in ArnT (23.53%, L54H and G164S), PmrA (11.76%, G53V and D86E), PmrB (11.76%, T89P and T134P), PmrC (11.76%, S257L), PhoQ (5.88%, L322Q and Q435H), and ArnB (5.88%, G47D) along with the acquisition of mcr-1.1 by a single isolate of ST525. CONCLUSIONS: In this study, we present the genotypic colistin resistance mechanisms in K. pneumoniae isolated in Egypt. More effective antibiotic stewardship protocols must be implemented by Egyptian health authorities to restrain this hazard and safeguard the future utility of colistin. This is the first characterization of a complete sequence of mcr-1.1-bearing IncHI2/IncHI2A plasmid recovered from K. pneumoniae clinical isolate belonging to the emerging high-risk clone ST525.


Subject(s)
Colistin , Klebsiella pneumoniae , Humans , Colistin/pharmacology , Egypt , Klebsiella pneumoniae/genetics , Genomics , Intensive Care Units
3.
BMC Microbiol ; 23(1): 122, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37138240

ABSTRACT

BACKGROUND: Probiotics and their derived postbiotics, as cell-free supernatants (CFS), are gaining a solid reputation owing to their prodigious health-promoting effects. Probiotics play a valuable role in the alleviation of various diseases among which are infectious diseases and inflammatory disorders. In this study, three probiotic strains, Lactiplantibacillus plantarum, Lacticaseibacillus rhamnosus, and Pediococcus acidilactici, were isolated from marketed dietary supplements. The antimicrobial activity of the isolated probiotic strains as well as their CFS was investigated. The neutralized CFS of the isolated probiotics were tested for their antibiofilm potential. The anti-inflammatory activity of the isolated Lactobacillus spp., together with their CFS, was studied in the carrageenan-induced rat paw edema model in male Wistar rats. To the best of our knowledge, such a model was not previously experimented to evaluate the anti-inflammatory activity of the CFS of probiotics. The histopathological investigation was implemented to assess the anti-inflammatory prospect of the isolated L. plantarum and L. rhamnosus strains as well as their CFS. RESULTS: The whole viable probiotics and their CFS showed variable growth inhibition of the tested indicator strains using the agar overlay method and the microtiter plate assay, respectively. When tested for virulence factors, the probiotic strains were non-hemolytic lacking both deoxyribonuclease and gelatinase enzymes. However, five antibiotic resistance genes, blaZ, ermB, aac(6')- aph(2"), aph(3'')-III, and vanX, were detected in all isolates. The neutralized CFS of the isolated probiotics exhibited an antibiofilm effect as assessed by the crystal violet assay. This effect was manifested by hindering the biofilm formation of the tested Staphylococcus aureus and Pseudomonas aeruginosa clinical isolates in addition to P. aeruginosa PAO1 strain. Generally, the cell cultures of the two tested probiotics moderately suppressed the acute inflammation induced by carrageenan compared to indomethacin. Additionally, the studied CFS relatively reduced the inflammatory changes compared to the inflammation control group but less than that observed in the case of the probiotic cultures treated groups. CONCLUSIONS: The tested probiotics, along with their CFS, showed promising antimicrobial and anti-inflammatory activities. Thus, their safety and their potential use as biotherapeutics for bacterial infections and inflammatory conditions are worthy of further investigation.


Subject(s)
Anti-Infective Agents , Probiotics , Male , Rats , Animals , Carrageenan , Rats, Wistar , Probiotics/pharmacology , Anti-Inflammatory Agents/pharmacology , Inflammation
4.
Antibiotics (Basel) ; 11(11)2022 Nov 13.
Article in English | MEDLINE | ID: mdl-36421264

ABSTRACT

Uropathogenic Escherichia coli (UPEC) is the main etiological agent of urinary tract infections (UTIs). The pathogenesis of UTIs relies upon UPEC's acquisition of virulence determinants that are commonly inserted into large chromosomal blocks which are termed 'pathogenicity islands' (PAIs). In this study, we investigated the virulence-associated genes embedded in the chromosome of a UPEC Egyptian strain, EC14142. Additionally, we present a detailed characterization of the PAIs in the EGY_EC14142 chromosome. The isolate displayed a multidrug-resistant phenotype, and whole genome sequencing indicated that it belonged to the globally disseminated O25:H4-ST131 pandemic lineage and the H30-Rx clade. EGY_EC14142 carried genes that are responsible for resistance to aminoglycosides, fluoroquinolones, extended-spectrum ß-lactams, macrolides, folate pathway antagonists, and tetracyclines. It encoded five PAIs with a high similarity to PAI II536, PAI IV536, PAI V536, PAI-536-icd, and PAIusp. The genome analysis of EGY_EC14142 with other closely related UPEC strains revealed that they have a high nucleotide sequence identity. The constructed maximum-likelihood phylogenetic tree showed the close clonality of EGY_EC14142 with the previously published ST131 UPEC international isolates, thus endorsing the broad geographical distribution of this clone. This is the first report characterizing PAIs in a UPEC Egyptian strain belonging to the globally disseminated pandemic clone O25:H4-ST131.

5.
Antibiotics (Basel) ; 11(8)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-36009900

ABSTRACT

The accelerated dispersion of multidrug-resistant (MDR) Escherichia coli due to the production of extended-spectrum ß-lactamases (ESBLs) or AmpC enzymes has been noted in Egypt, presenting a serious treatment challenge. In this study, we investigate the prevalence of ESBLs and AmpC enzymes among 48 E. coli isolates collected from patients with urinary tract infections admitted to a teaching hospital in Alexandria. Phenotypic and genotypic methods of detection are conducted. Isolates producing both enzymes are tested for the mobilization of their genes by a broth mating experiment. Whole genome sequencing (WGS) is performed for isolate EC13655. The results indicate that 80% of the isolates are MDR, among which 52% and 13% were ESBL and AmpC producers, respectively. Conjugation experiments fail to show the mobilization of blaCMY-2 in EC13655, which was chosen for WGS. In silico analysis reveals that the isolate belongs to a ST410-H24Rx high-risk clone. It coharbors the ESBL-encoding genes blaCTX-M-15, blaTEM-1, blaOXA-1 and blaNDM-5 on an IncFIA/IncFIB/IncFII/IncQ1 multireplicon plasmid. The chromosomal location of blaCMY-2 is detected with a flanking upstream copy of ISEcp1. This chromosomal integration of blaCMY-2 establishes the stable maintenance of the gene and thus, necessitates an imperative local surveillance to reduce further spread of such strains in different clinical settings.

6.
Microorganisms ; 10(6)2022 May 26.
Article in English | MEDLINE | ID: mdl-35744615

ABSTRACT

Recently, Egypt has witnessed the emergence of multidrug-resistant (MDR) Klebsiella pneumoniae, which has posed a serious healthcare challenge. The accelerated dissemination of blaCTX-M genes among these MDR K. pneumoniae, particularly blaCTX-M-14 and blaCTX-M-15, have been noted. In this study, we investigated the occurrence of blaCTX-M-IV among K. pneumoniae recovered from the laboratory of a major hospital in Alexandria. The 23 tested isolates showed an MDR phenotype and the blaCTX-M-IV gene was detected in ≈22% of the isolates. The transformation of plasmids harboring blaCTX-M-IV to chemically competent cells of Escherichia coli DH5α was successful in three out of five of the tested blaCTX-M-IV-positive isolates. Whole genome sequencing of K22 indicated that the isolate belonged to the high-risk clone ST383, showing a simultaneous carriage of blaCTX-M-14 on IncL/M plasmid, i.e., pEGY22_CTX-M-14, and blaCTX-M-15 on a hybrid IncHI1B/IncFIB plasmid, pEGY22_CTX-M-15. Alignment of both plasmids revealed high similarity with those originating in the UK, Germany, Australia, Russia, China, Saudi Arabia, and Morocco. pEGY22_CTX-M-15 was a mosaic plasmid that demonstrated convergence of MDR and virulence genes. The emergence of such a plasmid with enhanced genetic plasticity constitutes the perfect path for the evolution of K. pneumoniae isolates causing invasive untreatable infections especially in a country with a high burden of infectious diseases such as Egypt. Therefore there is an imperative need for countrywide surveillances to monitor the prevalence of these superbugs with limited therapeutic options.

7.
Microorganisms ; 9(4)2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33920265

ABSTRACT

The reintroduction of colistin, a last-resort antibiotic for multidrug-resistant pathogens, resulted in the global spread of plasmid-mediated mobile colistin resistance (mcr) genes. Our study investigated the occurrence of colistin resistance among Escherichia coli isolated from patients with urinary tract infections admitted to a teaching hospital in Egypt. Out of 67 isolates, three isolates were colistin-resistant, having a minimum inhibitory concentration of 4 µg/mL and possessing the mcr-1 gene. A double mechanism of colistin resistance was detected; production of mcr-1 along with amino acid substitution in PmrB (E123D and Y358N) and PmrA (G144S). Broth mating experiments inferred that mcr-1 was positioned on conjugative plasmids. Whole-genome sequencing of EC13049 indicated that the isolate belonged to O23:H4-ST641 lineage and to phylogroup D. The mcr-1-bearing plasmid corresponded to IncHI2 type with a notable similarity to other E. coli plasmids previously recovered from Egypt. The unbanned use of colistin in the Egyptian agriculture sector might have created a potential reservoir for the mcr-1 gene in food-producing animals that spread to humans. More proactive regulations must be implemented to prevent further dissemination of this resistance. This is the first characterization of mcr-1-carrying IncHI2:ST4 plasmid recovered from E. coli of a clinical source in Egypt.

8.
J Clin Pediatr Dent ; 44(5): 289-295, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-33181849

ABSTRACT

OBJECTIVE: To investigate the effect of two methods of propolis administration on plaque accumulation and microbial count as well as patient acceptance of each vehicle. STUDY DESIGN: A randomized clinical trial with two parallel arms was used with a sample of 60 high caries risk children 6-8 years old. Children were divided randomly into two groups. Group I: Children who received propolis chewing gum and instructed to chew it twice daily for at least twenty minutes, for two weeks. Group II: children who received propolis mouthwash and instructed to rinse twice daily for one minute. A plaque index was recorded and a plaque sample was collected from all participants at base line and after two weeks of treatment. All participants were asked to rate the preparation they received during treatment period on a Visual Analogue Scale chart. RESULTS: Data showed that propolis had a significant effect on reducing plaque scores and colony counts in both vehicles. There was no significant difference between both vehicles neither on plaque reduction nor on microbial count. However children preferred the gum formula. CONCLUSION: Propolis in both vehicles reduced plaque accumulation and microbial count which recommends its use as an antimicrobial agent in different vehicles.


Subject(s)
Anti-Infective Agents , Dental Caries , Dental Plaque , Propolis , Chewing Gum , Child , Dental Caries/prevention & control , Dental Plaque/prevention & control , Humans , Propolis/therapeutic use , Streptococcus mutans
9.
Pol J Microbiol ; 69(1): 73-84, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32189482

ABSTRACT

The contribution of fluconazole-resistant Candida spp. isolates to urinary tract infections in Egypt has become a nationwide problem. A recent approach to overcome such disaster is combining conventional antifungals with non-antifungals. This study investigated the interaction of amikacin with fluconazole against resistant Candida strains isolated from the urine culture of patients admitted to Alexandria Main University Hospital. Among the collected Candida spp. isolates, 42.9% were resistant to fluconazole with MICs ranging between 128 and 1,024 µg/ml. The resistance-modifying activity of amikacin (4,000 µg/ml) was studied against fluconazole-resistant isolates where amikacin sensitized 91.7 % of resistant Candida spp. isolates to fluconazole with a modulation factor ranging between 32 and 256. The rhodamine efflux assay was performed to examine the impact of amikacin on efflux pump activity. After 120 minutes of treatment, amikacin affected the efflux pump activity of the isolates tested with a percentage of reduction in the fluorescence intensity of 8.9%. Quantitative real-time PCR was applied to assess the amikacin effect on the expression of the efflux pump genes MDR1, CDR1, and CDR2. The downregulatory effect of amikacin on the expression of the studied genes caused a percentage of reduction in the expression level ranging between 42.1 and 94%. In conclusion, amikacin resensitized resistant Candida spp. isolates to fluconazole and could be used in combination in the management of candiduria with a higher efficiency or at lower administration doses. To the best of our knowledge, this is the first study evaluating the enhancement of fluconazole activity in combination with amikacin against Candida spp.The contribution of fluconazole-resistant Candida spp. isolates to urinary tract infections in Egypt has become a nationwide problem. A recent approach to overcome such disaster is combining conventional antifungals with non-antifungals. This study investigated the interaction of amikacin with fluconazole against resistant Candida strains isolated from the urine culture of patients admitted to Alexandria Main University Hospital. Among the collected Candida spp. isolates, 42.9% were resistant to fluconazole with MICs ranging between 128 and 1,024 µg/ml. The resistance-modifying activity of amikacin (4,000 µg/ml) was studied against fluconazole-resistant isolates where amikacin sensitized 91.7 % of resistant Candida spp. isolates to fluconazole with a modulation factor ranging between 32 and 256. The rhodamine efflux assay was performed to examine the impact of amikacin on efflux pump activity. After 120 minutes of treatment, amikacin affected the efflux pump activity of the isolates tested with a percentage of reduction in the fluorescence intensity of 8.9%. Quantitative real-time PCR was applied to assess the amikacin effect on the expression of the efflux pump genes MDR1, CDR1, and CDR2. The downregulatory effect of amikacin on the expression of the studied genes caused a percentage of reduction in the expression level ranging between 42.1 and 94%. In conclusion, amikacin resensitized resistant Candida spp. isolates to fluconazole and could be used in combination in the management of candiduria with a higher efficiency or at lower administration doses. To the best of our knowledge, this is the first study evaluating the enhancement of fluconazole activity in combination with amikacin against Candida spp.


Subject(s)
Amikacin/pharmacology , Antifungal Agents/pharmacology , Candida/drug effects , Drug Resistance, Fungal/drug effects , Fluconazole/pharmacology , Gene Expression Regulation, Fungal/drug effects , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Candidiasis/drug therapy , Candidiasis/microbiology , Down-Regulation , Fungal Proteins/genetics , Humans , Membrane Transport Proteins/genetics , Microbial Sensitivity Tests , Urinary Tract Infections/drug therapy , Urinary Tract Infections/microbiology
10.
Pol J Microbiol ; 68(1): 59-69, 2019.
Article in English | MEDLINE | ID: mdl-31050254

ABSTRACT

The widespread of infections caused by methicillin-resistant Staphylococcus aureus (MRSA), has necessitated the search for alternative therapies; introduction of new agents being a suggestion. This study compares the in vitro and in vivo activities of zabofloxacin, a novel fluoroquinolone, with moxifloxacin, levofloxacin and ciprofloxacin against clinical isolates of MRSA from patients hospitalized in the Alexandria Main University hospital; a tertiary hospital in Alexandria, Egypt, where zabofloxacin has not been yet introduced. The strains tested showed the highest percentage of susceptibility to zabofloxacin (61.2%) among the tested fluoroquinolones with the most effective MIC50 and MIC90 (0.25 and 2 µg/ml, respectively). Time-kill curve analysis revealed a rapid bactericidal activity of zabofloxacin after 6 h of incubation with a quinolone-resistant isolate and complete killing when tested against a quinolone-sensitive isolate with inhibition of regrowth in both cases. PCR amplification and sequencing of QRDRs in selected strains revealed the following amino acid substitutions: Ser-84→Leu in GyrA, Ser-80→Phe in GrlA and Pro-451→Ser in GrlB. The in vivo studies demonstrated that zabofloxacin possessed the most potent protective effect against systemic infection in mice (ED50: 29.05 mg/kg) with lowest count in the dissected lungs (3.66 log10 CFU/ml). The histopathological examination of lung specimens of mice treated with zabofloxacin displayed least congestion, inflammation, oedema and necrosis with clear alveolar spaces and normal vessels. In conclusion, zabofloxacin was proved to possess high in vitro and in vivo efficacy encompassing its comparators and could be considered as a possible candidate for the treatment of infections caused by MRSA. To our knowledge, this is the first study evaluating the in vitro and in vivo activity of zabofloxacin against Egyptian MRSA clinical isolates.The widespread of infections caused by methicillin-resistant Staphylococcus aureus (MRSA), has necessitated the search for alternative therapies; introduction of new agents being a suggestion. This study compares the in vitro and in vivo activities of zabofloxacin, a novel fluoroquinolone, with moxifloxacin, levofloxacin and ciprofloxacin against clinical isolates of MRSA from patients hospitalized in the Alexandria Main University hospital; a tertiary hospital in Alexandria, Egypt, where zabofloxacin has not been yet introduced. The strains tested showed the highest percentage of susceptibility to zabofloxacin (61.2%) among the tested fluoroquinolones with the most effective MIC50 and MIC90 (0.25 and 2 µg/ml, respectively). Time-kill curve analysis revealed a rapid bactericidal activity of zabofloxacin after 6 h of incubation with a quinolone-resistant isolate and complete killing when tested against a quinolone-sensitive isolate with inhibition of regrowth in both cases. PCR amplification and sequencing of QRDRs in selected strains revealed the following amino acid substitutions: Ser-84→Leu in GyrA, Ser-80→Phe in GrlA and Pro-451→Ser in GrlB. The in vivo studies demonstrated that zabofloxacin possessed the most potent protective effect against systemic infection in mice (ED50: 29.05 mg/kg) with lowest count in the dissected lungs (3.66 log10 CFU/ml). The histopathological examination of lung specimens of mice treated with zabofloxacin displayed least congestion, inflammation, oedema and necrosis with clear alveolar spaces and normal vessels. In conclusion, zabofloxacin was proved to possess high in vitro and in vivo efficacy encompassing its comparators and could be considered as a possible candidate for the treatment of infections caused by MRSA. To our knowledge, this is the first study evaluating the in vitro and in vivo activity of zabofloxacin against Egyptian MRSA clinical isolates.


Subject(s)
Anti-Bacterial Agents/pharmacology , Fluoroquinolones/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Animals , Bacterial Load/drug effects , Ciprofloxacin/pharmacology , DNA Gyrase/drug effects , DNA Gyrase/genetics , DNA Topoisomerase IV/drug effects , DNA Topoisomerase IV/genetics , Egypt , Hospitals, University , Humans , Levofloxacin/pharmacology , Lung/microbiology , Lung/pathology , Male , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Mice , Microbial Sensitivity Tests , Moxifloxacin/pharmacology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology
11.
Molecules ; 23(5)2018 Apr 29.
Article in English | MEDLINE | ID: mdl-29710842

ABSTRACT

N-(2-{[2-(1H-Indol-2-ylcarbonyl)hydrazinyl](oxo)acetyl}phenyl)acetamides (5a⁻h) and N-[2-(2-{[2-(acetylamino)phenyl](oxo)acetyl}hydrazinyl)-2-oxoethyl]-1H-indole-2-carboxamides (5i⁻l) were synthesized and characterized with different analytical tools. N-Acetylisatines 4a⁻d were subjected to ring opening at their C2 carbons with the aid of different indole-bearing hydrazides 3a,b and 7 to afford the respective glyoxylamides 5a⁻l. The antimicrobial activity of the target compounds 5a⁻l was assessed with the aid of Diameter of the Inhibition Zone (DIZ) and Minimum Inhibitory Concentration (MIC) assays against a panel of Gram-positive and Gram-negative bacteria and certain fungal strains. The antimicrobial screening revealed that Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans are the most sensitive microorganisms towards the synthesized compounds 5a⁻l. In addition, compounds 5c and 5h emerged as the most active congeners towards Staphylococcus aureus and Candida albicans, respectively. Molecular docking studies revealed the possible binding mode of compounds 5c and 5h to their target proteins.


Subject(s)
Acetamides/chemical synthesis , Anti-Infective Agents/chemical synthesis , Bacteria/drug effects , Fungi/drug effects , Acetamides/chemistry , Acetamides/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Candida albicans/drug effects , Escherichia coli/drug effects , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Structure-Activity Relationship
12.
Molecules ; 22(11)2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29140257

ABSTRACT

Molecular hybridization has a wide application in medicinal chemistry to obtain new biologically active compounds. New isatin-indole molecular hybrids 5a-n have been synthesized and characterized by various spectroscopic tools. The in vitro antimicrobial potential of the prepared compounds 5a-n was assessed using diameter of the inhibition zone (DIZ) and minimum inhibitory concentration (MIC) assays against a panel of Gram-negative bacteria, Gram-positive bacteria and fungi. Most of the synthesized compounds 5a-n showed weak activities against Gram-negative bacteria while compounds 5b and 5c exhibited good activities against Gram-positive bacteria. On the other hand, compound 5j emerged as the most active compound towards Candida albicans (C. albicans), with an MIC value of 3.9 µg/mL, and compound 5g as the most active congener towards Asperagillus niger (A. niger), with an MIC value of 15.6 µg/mL. Moreover, compound 5h manifested the best anti-P. notatum effect, with an MIC value of 7.8 µg/mL, making it equipotent with compound 5g.


Subject(s)
Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/pharmacology , Indoles/chemical synthesis , Indoles/pharmacology , Anti-Infective Agents/chemistry , Aspergillus niger/drug effects , Candida albicans/drug effects , Dose-Response Relationship, Drug , Fungi/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Indoles/chemistry , Isatin/chemistry , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Molecular Structure , Structure-Activity Relationship
13.
Biomed Res Int ; 2016: 6525163, 2016.
Article in English | MEDLINE | ID: mdl-27314033

ABSTRACT

In an attempt to reach better treatment of skin infections, gel formulations containing Cefotaxime (CTX) were prepared. The gel was formulated using Carbopol 934 (C934), Hydroxypropyl Methylcellulose 4000 (HPMC 4000), Carboxymethylcellulose Sodium (Na CMC), Pectin (PEC), Xanthan Gum (XG), or Guar Gum (GG). Thirteen different formulas were prepared and characterized physically in terms of color, syneresis, spreadability, pH, drug content, and rheological properties. Drug-excipients compatibility studies were confirmed by FTIR and then in vitro drug release study was conducted. In vitro and in vivo antibacterial activities of CTX were studied against wound pathogens such as, Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Pseudomonas aeruginosa (P. aeruginosa), using either pure drug or Fucidin® cream as control. F13 provides better spreadability compared to F1 (XG) or F11 (HPMC). Moreover, the release of the drug from hydrogel F13 containing C934 was slower and sustained for 8 h. Stability study revealed that, upon storage, there were no significant changes in pH, drug content, and viscosity of the gels. Also, F13 showed the larger inhibition zone and highest antibacterial activity among other formulations. Histological analysis demonstrated that after single treatment with F13 gel formulation, a noticeable reduction in microbial bioburden occurred in case of both Gram positive and Gram negative bacterial isolates.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Cefotaxime/administration & dosage , Hydrogels/administration & dosage , Staphylococcal Skin Infections/drug therapy , Administration, Topical , Anti-Bacterial Agents/chemistry , Cefotaxime/chemistry , Drug Compounding , Escherichia coli/drug effects , Escherichia coli/growth & development , Humans , Hydrogels/chemistry , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Spectroscopy, Fourier Transform Infrared , Staphylococcal Skin Infections/microbiology , Staphylococcal Skin Infections/pathology , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development
14.
Saudi Pharm J ; 23(1): 55-66, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25685044

ABSTRACT

Biofilm formation is often associated with increased Candida resistance toward antifungal agents. Therefore, the current study aimed to assess the incidence of biofilm formation among Candida isolates and to investigate the effect of high doses of fluconazole {FLC}, voriconazole {VOC} and amphotericin B {AMB}, singly and in combination on mature biofilms. Moreover, it aimed to assess the expression of selected genes (CDR1, KRE1 and SKN1) responsible for Candida biofilm resistance. The study included 49 patients; samples were collected from the King Khalid Hospital, Riyadh, Saudi Arabia. Isolates were prepared for biofilm formation and quantification using 0.4% (w/v) crystal violet. Minimum Inhibitory concentration (MIC) and fractional inhibitory concentration (FIC) were conducted by the broth microdilution method. Biofilm eradication was evaluated using counting, XTT stain intensity and observed under the inverted microscope. Selected genes were evaluated in Candida biofilms under the effect of antifungal exposure using QPCR. The major isolates were Candida albicans (65.3%) followed by Candida tropicalis and Candida glabrata. 77.6% of the strains were biofilm formers. AMB showed susceptibility in 87.8% of isolates, followed by VOC (77.6%) and FLC (67.3%). MIC50 and MIC90 were (0.03, 0.125), (0.5, 8), (2, >128) µg/ml for AMB, VOC and FLC, respectively. 34.7% and 18.4% of the isolates were antagonistic to AMB/FLC and AMB/VOC, respectively. Mature biofilms of ten selected isolates were found resistant to FLC (1000 µg/ml). VOR and AMB concentration required to inhibit biofilm formation was 16-250 fold higher than the MIC for planktonic cells. Isolates showed significant reduction with antifungal combination when compared with the untreated controls (p value â©½ 0.01), or using fluconazole alone (p value â©½ 0.05). High doses of the antifungals were employed to assess the effect on the persisters' selected gene expression. Marked over expression of SKN1 and to a lesser extent KRE1 was noticed among the mature biofilms treated with AMB alone or in combination after 1 h of exposure, and SKN1 expression was even more sharply induced after 24 h. No statistically significant over expression of CDR1 was observed in biofilms after exposure to high doses of FLC, VOC or any of the combinations used.

15.
Biomed Res Int ; 2014: 182197, 2014.
Article in English | MEDLINE | ID: mdl-24551841

ABSTRACT

Vancomycin HCl was prepared as orally administered colon target drug delivery tablets for systemic therapy. Tablet matrices containing 10-60% of tablet weight of guar gum (F1-F6) were prepared by direct compression and subjected to in vitro release studies to explore their sustained release in the colon. Various synthetic and natural polymers were incorporated to F6 to modify the drug release rate. Different 15 matrix tablet formulations (F6-F20) were enteric coated with hydroxypropyl methyl cellulose phthalate. F6, F13 and F20 showed promising sustained release results having median dissolution time (MDT) values: 8.25, 7.97, and 7.64, respectively. Microbiological assay was performed to test the efficacy of F6, F13, and F20 to inhibit clinical Staphylococcus aureus (SA) isolates. Bactericidal activity of F6 was reached after 2, 4, and 24 hours of incubation against MSSA 18, MRSA 29, and MRSA 11 strains, respectively, while it was reached within 6-8 hours in case of F13, and F20 against all strains tested. F13 enhanced log microbial reduction by 1.74, 0.65 and 2.4 CFU/mL compared to F6 while it was 1, 2.57 and 1.57 compared to F20 against MSSA18, MRSA11 and MRSA29, respectively. Vancomycin HCl tablets displayed a promising sustained release in vitro and microbiological inhibitory action on all isolates tested.


Subject(s)
Chemistry, Pharmaceutical , Cross Infection/drug therapy , Staphylococcus aureus/drug effects , Vancomycin/administration & dosage , Administration, Oral , Colon/drug effects , Colon/pathology , Cross Infection/pathology , Drug Delivery Systems , Galactans/administration & dosage , Galactans/chemistry , Humans , Mannans/administration & dosage , Mannans/chemistry , Plant Gums/administration & dosage , Plant Gums/chemistry
16.
Molecules ; 18(10): 12208-21, 2013 Sep 30.
Article in English | MEDLINE | ID: mdl-24084023

ABSTRACT

Anti-Candida activities of certain new oximes 4a-d and their respective aromatic esters 5a-l are reported. The tested compounds 4a-d and 5a-l exhibited better anti-Candida profiles than fluconazole. Compound 5j, namely (E)-3-(1H-imidazol-1-yl)-1-phenylpropan-1-one O-4-chlorobenzoyl oxime emerged as the most active congener, with a MIC value of 0.0054 µmol/mL being more potent than both fluconazole (MIC > 1.6325 µmol/mL) and miconazole (MIC value = 0.0188 µmol/mL) as a new anti-Candida albicans agent.


Subject(s)
Antifungal Agents/chemical synthesis , Candida albicans/drug effects , Candida tropicalis/drug effects , Imidazoles/chemical synthesis , Oximes/chemical synthesis , Antifungal Agents/pharmacology , Esters , Fluconazole/pharmacology , Imidazoles/pharmacology , Miconazole/pharmacology , Microbial Sensitivity Tests , Oximes/pharmacology
17.
Chem Cent J ; 7(1): 168, 2013 Oct 25.
Article in English | MEDLINE | ID: mdl-24156656

ABSTRACT

BACKGROUND: An increased incidence of fungal infections, both invasive and superficial, has been witnessed over the last two decades. Candida species seem to be the main etiology of nosocomial fungal infections worldwide with Candida albicans, which is commensal in healthy individuals, accounting for the majority of invasive Candida infections with about 30-40% of mortality. RESULTS: New aromatic and heterocyclic esters 5a-k of 1-aryl-3-(1H-imidazol-1-yl)propan-1-ols 4a-d were successfully synthesized and evaluated for their anti-Candida potential. Compound 5a emerged as the most active congener among the newly synthesized compounds 5a-k with MIC value of 0.0833 µmol/mL as compared with fluconazole (MIC value >1.6325 µmol/mL). Additionally, molecular modeling studies were conducted on a set of anti-Candida albicans compounds. CONCLUSION: The newly synthesized esters 5a-k showed more potent anti-Candida activities than fluconazole. Compounds 7 and 8 revealed significant anti-Candida albicans activity and were able to effectively satisfy the proposed pharmacophore geometry, using the energy accessible conformers (Econf < 20 kcal/mol).

SELECTION OF CITATIONS
SEARCH DETAIL
...