Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Food Sci Nutr ; 11(5): 2211-2231, 2023 May.
Article in English | MEDLINE | ID: mdl-37181299

ABSTRACT

A substantial global health burden is associated with neurotoxicity caused by lead (Pb) exposure and the common mechanism of this toxicity is mainly via oxidative damage. Curcumin has remarkable pharmacological activities but remains clinically constrained due to its poor bioavailability when orally administered. Currently, cockle shell-derived calcium carbonate nanoparticle (CSCaCO3NP) is gaining more acceptance in nanomedicine as a nanocarrier to various therapeutics. This study aimed at investigating the ameliorative effect of curcumin-loaded CSCaCO3NP (Cur-CSCaCO3NP) on lead-induced neurotoxicity in rats. A total of 36 male Sprague-Dawley rats were randomly assigned into five groups. Each group consists of 6 rats apart from the control group which consists of 12 rats. During the 4 weeks induction phase, all rats received a flat dose of 50 mg/kg of lead while the control group received normal saline. The treatment phase lasted for 4 weeks, and all rats received various doses of treatments as follows: group C (Cur 100) received 100 mg/kg of curcumin, group D (Cur-CSCaCO3NP 50) received 50 mg/kg of Cur-CSCaCO3NP, and group E (Cur-CSCaCO3NP 100) received 100 mg/kg of Cur-CSCaCO3NP. The motor function test was carried out using the horizontal bar method. The cerebral and cerebellar oxidative biomarker levels were estimated using ELISA and enzyme assay kits. Lead-administered rats revealed a significant decrease in motor scores and SOD activities with a resultant increase in MDA levels. Furthermore, marked cellular death of the cerebral and cerebellar cortex was observed. Conversely, treatment with Cur-CSCaCO3NP demonstrated enhanced ameliorative effects when compared with free curcumin treatment by significantly reversing the aforementioned alterations caused by lead. Thus, CSCaCO3NP enhanced the efficacy of curcumin by ameliorating the lead-induced neurotoxicity via enhanced attenuation of oxidative stress.

2.
Saudi J Biol Sci ; 27(6): 1538-1552, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32489292

ABSTRACT

Lead (Pb) toxicity affects the hepatic and renal systems resulting to homeostasis imbalance. Curcumin is a strong antioxidant but has restrained clinical applications due to its poor bioavailability. Nanomedicine showed promising potentials in drug delivery and has brought forth the use of cockle shell-derived aragonite calcium carbonate nanoparticles (CSCaCO3NP) to enhance the effectiveness and targeted delivery of curcumin (Cur). Thus, this study aimed at evaluating the therapeutic effect of curcumin-loaded CSCaCO3NP (Cur- CSCaCO3NP) on lead-induced hepato-renal toxicity in rats. Thirty-six male adults Sprague-Dawley rats were randomly assigned into five groups. All groups contained six rats each except for group A, which contained 12 rats. All rats apart from the rats in group A (control) were orally administered a flat dose of 50 mg/kg of lead for four weeks. Six rats from group A and B were euthanized after four weeks of lead induction. Oral administration of curcumin (100 mg/kg) for group C and Cur-CSCaCO3NP (50 and 100 mg/kg) for groups D and E respectively, commenced immediately after 4 weeks of lead induction which lasted for 4 weeks. All rats were euthanized at the 8th week of the experiment. Further, biochemical, histological and hematological analysis were performed. The findings revealed a biochemical, hematological and histological changes in lead-induced rats. However, treatments with the Cur-CSCaCO3NP and free curcumin reversed the aforementioned changes. Although, Cur-CSCaCO3NP presented better therapeutic effects on lead-induced toxicity in rats when compared to free curcumin as there was significant improvements in hematological, biochemical and histological changes which is parallel with attenuation of oxidative stress. The findings of the current study hold great prospects for Cur-CSCaCO3NP as a novel approach for effective oral treatment of lead-induced hepato-renal impairments.

3.
Int J Nanomedicine ; 12: 8587-8598, 2017.
Article in English | MEDLINE | ID: mdl-29238193

ABSTRACT

The healing of load-bearing segmental defects in long bones is a challenge due to the complex nature of the weight that affects the bone part and due to bending, shearing, axial, and torsional forces. An innovative porous 3D scaffolds implant of CaCO3 aragonite nanocomposite derived from cockle shell was advanced for substitute bone solely for load-bearing cases. The biomechanical characteristics of such materials were designed to withstand cortical bone strength. In promoting bone growth to the implant material, an ideal surface permeability was formed by means of freeze drying and by adding copolymers to the materials. The properties of coating and copolymers supplement were also assessed for bone-implant connection resolutions. To examine the properties of the material in advanced biological system, an experimental trial in an animal model was carried out. Critical sized defect of bone was created in rabbit's radial bone to assess the material for a load-bearing application with a short and extended period assessment with histological evaluation of the incorporated implanted material to the bone of the host. Trials in animal models proved that the material has the capability of enduring load-bearing conditions for long-term use devoid of breaking or generating stress that affects the host bone. Histological examination further confirmed the improved integration of the implanted materials to the host bone with profound bone development into and also above the implanted scaffold, which was attained with negligible reaction of the tissues to a foreign implanted material.


Subject(s)
Bone Regeneration , Bone Substitutes , Nanocomposites/chemistry , Animals , Biomechanical Phenomena , Bone and Bones/physiology , Bone and Bones/surgery , Male , Materials Testing , Porosity , Rabbits , Tissue Scaffolds , Weight-Bearing
4.
In Vitro Cell Dev Biol Anim ; 53(10): 896-907, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28916966

ABSTRACT

Cockle shell-derived calcium carbonate nanoparticles have shown promising potentials as slow drug-releasing compounds in cancer chemotherapy. In this study, we evaluated the in vitro efficacy of docetaxel (DTX)-loaded CaCO3NP on 4T1 cell line. This was achieved by evaluating the following: cytotoxicity using MTT assay, fluorescence imaging, apoptosis with Annexin V assay, cell cycle analysis, scanning (SEM) and transmission electron microscopy (TEM), and scratch assay. Based on the results, DTX-CaCO3NP with a DTX concentration of 0.5 µg/mL and above had comparable cytotoxic effects with free DTX at 24 h, while all concentrations had similar cytotoxic effect on 4T1 cells at 48 and 72 h. Fluorescence and apoptosis assay showed a higher (p < 0.05) number of apoptotic cells in both free DTX and DTX-CaCO3NP groups. Cell cycle analysis showed cycle arrest at subG0 and G2/M phases in both treatment groups. SEM showed presence of cellular blebbing, while TEM showed nuclear fragmentation, apoptosis, and vacuolation in the treatment groups. Scratch assay showed lower (p < 0.05) closure in both free DTX and DTX-CaCO3NP groups. The results from this study showed that DTX-CaCO3NP has similar anticancer effects on 4T1 cells as free DTX, and since it has a slow release rate, it is a more preferred substitute for free DTX.


Subject(s)
Antineoplastic Agents/administration & dosage , Mammary Neoplasms, Animal/drug therapy , Metal Nanoparticles/chemistry , Taxoids/administration & dosage , Animals , Antineoplastic Agents/pharmacokinetics , Apoptosis/drug effects , Calcium Carbonate/chemistry , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Docetaxel , Drug Delivery Systems/methods , Drug Liberation , Female , Mammary Neoplasms, Animal/pathology , Metal Nanoparticles/administration & dosage , Mice , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Taxoids/pharmacokinetics
5.
J Nanopart Res ; 19(5): 175, 2017.
Article in English | MEDLINE | ID: mdl-28553160

ABSTRACT

Calcium carbonate nanoparticles have shown promising potentials in the delivery of drugs and metabolites. There is however, a paucity of information on the safety of their intentional or accidental over exposures to biological systems and general health safety. To this end, this study aims at documenting information on the safety of subcutaneous doses of biogenic nanocrystals of aragonite polymorph of calcium carbonate derived from cockle shells (ANC) in Sprague-Dawley (SD) rats. ANC was synthesized using the top-down method, characterized using the transmission electron microscopy and field emission scanning electron microscope and its acute and repeated dose 28-day trial toxicities were evaluated in SD rats. The results showed that the homogenous 30 ± 5 nm-sized spherical pure aragonite nanocrystals were not associated with mortality in the rats. Severe clinical signs and gross and histopathological lesions, indicating organ toxicities, were recorded in the acute toxicity (29,500 mg/m2) group and the high dose (5900 mg/m2) group of the repeated dose 28-day trial. However, the medium- (590 mg/m2 body weight) and low (59 mg/m2)-dose groups showed moderate to mild lesions. The relatively mild lesions observed in the low toxicity dosage group marked the safety margin of ANC in SD rats. It was concluded from this study that the toxicity of CaCO3 was dependent on the particulate size (30 ± 5 nm) and concentration and the route of administration used.

6.
Int J Mol Sci ; 17(5)2016 May 19.
Article in English | MEDLINE | ID: mdl-27213349

ABSTRACT

The use of nanoparticle delivery systems to enhance intracellular penetration of antibiotics and their retention time is becoming popular. The challenge, however, is that the interaction of nanoparticles with biological systems at the cellular level must be established prior to biomedical applications. Ciprofloxacin-cockle shells-derived calcium carbonate (aragonite) nanoparticles (C-CSCCAN) were developed and characterized. Antibacterial activity was determined using a modified disc diffusion protocol on Salmonella Typhimurium (S. Typhimurium). Biocompatibilittes with macrophage were evaluated using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 5-Bromo-2'-deoxyuridine (BrdU) assays. Transcriptional regulation of interleukin 1 beta (IL-1ß) was determined using reverse transcriptase-polymerase chain reaction (RT-PCR). C-CSCCAN were spherical in shape, with particle sizes ranging from 11.93 to 22.12 nm. Encapsulation efficiency (EE) and loading content (LC) were 99.5% and 5.9%, respectively, with negative ζ potential. X-ray diffraction patterns revealed strong crystallizations and purity in the formulations. The mean diameter of inhibition zone was 18.6 ± 0.5 mm, which was better than ciprofloxacin alone (11.7 ± 0.9 mm). Study of biocompatability established the cytocompatability of the delivery system without upregulation of IL-1ß. The results indicated that ciprofloxacin-nanoparticles enhanced the antibacterial efficacy of the antibiotic, and could act as a suitable delivery system against intracellular infections.


Subject(s)
Calcium Carbonate , Ciprofloxacin , Drug Carriers , Macrophages/metabolism , Materials Testing , Nanoparticles/chemistry , Animals , Calcium Carbonate/chemistry , Calcium Carbonate/pharmacokinetics , Calcium Carbonate/pharmacology , Cell Line , Ciprofloxacin/chemistry , Ciprofloxacin/pharmacokinetics , Ciprofloxacin/pharmacology , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Carriers/pharmacology , Mice
7.
Integr Cancer Ther ; 15(4): NP53-NP66, 2016 12.
Article in English | MEDLINE | ID: mdl-27230756

ABSTRACT

BACKGROUND: Kefir is a unique cultured product that contains beneficial probiotics. Kefir culture from other parts of the world exhibits numerous beneficial qualities such as anti-inflammatory, immunomodulation, and anticancer effects. Nevertheless, kefir cultures from different parts of the world exert different effects because of variation in culture conditions and media. Breast cancer is the leading cancer in women, and metastasis is the major cause of death associated with breast cancer. The antimetastatic and antiangiogenic effects of kefir water made from kefir grains cultured in Malaysia were studied in 4T1 breast cancer cells. METHODS: 4T1 cancer cells were treated with kefir water in vitro to assess its antimigration and anti-invasion effects. BALB/c mice were injected with 4T1 cancer cells and treated orally with kefir water for 28 days. RESULTS: Kefir water was cytotoxic toward 4T1 cells at IC50 (half-maximal inhibitory concentration) of 12.5 and 8.33 mg/mL for 48 and 72 hours, respectively. A significant reduction in tumor size and weight (0.9132 ± 0.219 g) and a substantial increase in helper T cells (5-fold) and cytotoxic T cells (7-fold) were observed in the kefir water-treated group. Proinflammatory and proangiogenic markers were significantly reduced in the kefir water-treated group. CONCLUSIONS: Kefir water inhibited tumor proliferation in vitro and in vivo mainly through cancer cell apoptosis, immunomodulation by stimulating T helper cells and cytotoxic T cells, and anti-inflammatory, antimetastatic, and antiangiogenesis effects. This study brought out the potential of the probiotic beverage kefir water in cancer treatment.


Subject(s)
Angiogenesis Inhibitors/administration & dosage , Anti-Infective Agents/administration & dosage , Mammary Neoplasms, Animal/drug therapy , Probiotics/administration & dosage , Water/administration & dosage , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Kefir , Mammary Neoplasms, Animal/metabolism , Mice , Mice, Inbred BALB C , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Helper-Inducer/drug effects
8.
Article in English | MEDLINE | ID: mdl-25392577

ABSTRACT

BACKGROUND: Currently, there has been extensive research interest for inorganic nanocrystals such as calcium phosphate, iron oxide, silicone, carbon nanotube and layered double hydroxide as a drug delivery system especially in cancer therapy. However, toxicological screening of such particles is paramount importance before use as delivery carrier. In this study we examine the biocompatibility of CaCO3 nanocrystal on NIH 3T3 cell line. MATERIAL AND METHODS: Transmission and field emission scanning electron microscopy (TEM and FESEM) were used for the characterisation of CaCO3 nanocrystals. Cytotoxicity and genotoxic effect of calcium carbonate nanocrystals in cultured mouse embryonic fibroblast NIH 3T3 cell line using various bioassays including MTT, and Neutral red/Trypan blue double-staining assays. LDH, BrdU and reactive oxygen species were used for toxicity analysis. Cellular morphology was examined by scanning electron microscopy (SEM) and confocal fluorescence microscope. RESULTS: The outcome of the analyses revealed a clear rod-shaped aragonite polymorph of calcium carbonate nanocrystal. The analysed cytotoxic and genotoxicity of CaCO3 nanocrystal on NIH 3T3 cells using different bioassays revealed no significance differences as compared to control. A slight decrease in cell viability was noticed when the cells were exposed to higher concentrations of 200 to 400 µg/ml, while increase in ROS generation and LDH released at 200 and 400 µg/ml was observed. CONCLUSIONS: The study has shown that CaCO3 nanocrystal is biocompatible and non toxic to NIH 3T3 fibroblast cells. The analysed results offer a promising potential of CaCO3 nanocrystal for the development of intracellular drugs, genes and other macromolecule delivery systems.


Subject(s)
Calcium Carbonate/pharmacology , Cell Survival/drug effects , Drug Delivery Systems , Fibroblasts/drug effects , Nanoparticles , 3T3 Cells , Animals , Calcium Carbonate/adverse effects , Fibroblasts/metabolism , Mice , Nanoparticles/adverse effects , Reactive Oxygen Species/metabolism
9.
Biomed Res Int ; 2014: 391869, 2014.
Article in English | MEDLINE | ID: mdl-25028650

ABSTRACT

Bones are the most frequent site for breast cancer cells to settle and spread (metastasise); bone metastasis is considered to have a substantial impact on the quality of patients with common cancers. However, majority of breast cancers develop insensitivity to conventional chemotherapy which provides only palliation and can induce systemic side effects. In this study we evaluated the effect of free Dox and CaCO3/Dox nanocrystal on MCF-7 breast cancer using MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide), neural red, and lactate dehydrogenase colorimetric assays while DNA fragmentation and BrdU genotoxicity were also examined. Apoptogenic protein Bax, cytochrome C, and caspase-3 protein were analysed. Morphological changes of MCF-7 were determined using contrast light microscope and scanning and transmission electron microscope (SEM and TEM). The findings of the analysis revealed higher toxicity of CaCO3/Dox nanocrystal and effective cells killing compared to free Dox, morphological changes such as formation of apoptotic bodies, membrane blebbing, and absent of microvilli as indicated by the SEM analysis while TEM revealed the presence of chromatin condensation, chromosomal DNA fragmentation, cell shrinkage, and nuclear fragmentation. Results of TUNEL assay verified that most of the cells undergoes apoptosis by internucleosomal fragmentation of genomic DNA whereas the extent of apoptotic cells was calculated using the apoptotic index (AI). Therefore, the biobased calcium carbonate nanocrystals such as Dox carriers may serve as an alternative to conventional delivery system.


Subject(s)
Antacids/pharmacology , Antibiotics, Antineoplastic/pharmacology , Apoptosis/drug effects , Bone Neoplasms , Breast Neoplasms , Calcium Carbonate/pharmacology , Cytochromes c/metabolism , Doxorubicin/pharmacology , Drug Delivery Systems , Mitochondrial Proteins/metabolism , Nanoparticles , Neoplasm Proteins/metabolism , Bone Neoplasms/drug therapy , Bone Neoplasms/enzymology , Bone Neoplasms/secondary , Bone Neoplasms/ultrastructure , Breast Neoplasms/drug therapy , Breast Neoplasms/enzymology , Breast Neoplasms/ultrastructure , Cell Line, Tumor , Female , Humans , Neoplasm Metastasis
10.
Biomed Res Int ; 2014: 215097, 2014.
Article in English | MEDLINE | ID: mdl-24734228

ABSTRACT

Calcium carbonate (CaCO3) nanocrystals derived from cockle shells emerge to present a good concert in bone tissue engineering because of their potential to mimic the composition, structure, and properties of native bone. The aim of this study was to evaluate the biological response of CaCO3 nanocrystals on hFOB 1.19 and MC3T3 E-1 osteoblast cells in vitro. Cell viability and proliferation were assessed by MTT and BrdU assays, and LDH was measured to determine the effect of CaCO3 nanocrystals on cell membrane integrity. Cellular morphology was examined by SEM and fluorescence microscopy. The results showed that CaCO3 nanocrystals had no toxic effects to some extent. Cell proliferation, alkaline phosphatase activity, and protein synthesis were enhanced by the nanocrystals when compared to the control. Cellular interactions were improved, as indicated by SEM and fluorescent microscopy. The production of VEGF and TGF-1 was also affected by the CaCO3 nanocrystals. Therefore, bio-based CaCO3 nanocrystals were shown to stimulate osteoblast differentiation and improve the osteointegration process.


Subject(s)
Calcium Carbonate/chemistry , Nanoparticles/chemistry , Nanotechnology/methods , Osteoblasts/cytology , 3T3 Cells , Alkaline Phosphatase/metabolism , Animals , Biocompatible Materials/chemistry , Bone and Bones/chemistry , Calcium/chemistry , Cell Differentiation , Cell Membrane/metabolism , Cell Proliferation , Cell Survival , Colorimetry , L-Lactate Dehydrogenase/metabolism , Mice , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Tissue Scaffolds/chemistry , Transforming Growth Factor beta1/metabolism , Vascular Endothelial Growth Factor A/metabolism
11.
Biomed Res Int ; 2013: 587451, 2013.
Article in English | MEDLINE | ID: mdl-24324966

ABSTRACT

The synthesised biobased calcium carbonate nanocrystals had demonstrated to be an effective carrier for delivery of anticancer drug doxorubicin (DOX). The use of these nanocrystals displayed high levels of selectivity and specificity in achieving effective cancer cell death without nonspecific toxicity. These results confirmed that DOX was intercalated into calcium carbonate nanocrystals at high loading and encapsulation efficiency (4.8 and 96%, resp.). The CaCO3/DOX nanocrystals are relatively stable at neutral pH (7.4), resulting in slow release, but the nanocrystals progressively dissociated in acidic pH (4.8) regimes, triggering faster release of DOX. The CaCO3/DOX nanocrystals exhibited high uptake by MDA MB231 breast cancer cells and a promising potential delivery of DOX to target cells. In vitro chemosensitivity using MTT, modified neutral red/trypan blue assay, and LDH on MDA MB231 breast cancer cells revealed that CaCO3/DOX nanocrystals are more sensitive and gave a greater reduction in cell growth than free DOX. Our findings suggest that CaCO3 nanocrystals hold tremendous promise in the areas of controlled drug delivery and targeted cancer therapy.


Subject(s)
Breast Neoplasms/drug therapy , Doxorubicin/administration & dosage , Drug Delivery Systems , Nanoparticles/administration & dosage , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Breast Neoplasms/pathology , Calcium Carbonate/administration & dosage , Calcium Carbonate/chemistry , Cell Line, Tumor , Doxorubicin/chemistry , Female , Humans , Hydrogen-Ion Concentration , Nanoparticles/chemistry
12.
Molecules ; 18(9): 10580-98, 2013 Aug 30.
Article in English | MEDLINE | ID: mdl-23999729

ABSTRACT

Drug delivery systems are designed to achieve drug therapeutic index and enhance the efficacy of controlled drug release targeting with specificity and selectivity by successful delivery of therapeutic agents at the desired sites without affecting the non-diseased neighbouring cells or tissues. In this research, we developed and demonstrated a bio-based calcium carbonate nanocrystals carrier that can be loaded with anticancer drug and selectively deliver it to cancer cells with high specificity by achieving the effective osteosarcoma cancer cell death without inducing specific toxicity. The results showed pH sensitivity of the controlled release characteristics of the drug at normal physiological pH 7.4 with approximately 80% released within 1,200 min but when exposed pH 4.8 the corresponding 80% was released in 50 min. This study showed that the DOX-loaded CaCO3 nanocrystals have promising applications in delivery of anticancer drugs.


Subject(s)
Antibiotics, Antineoplastic/chemistry , Bone Neoplasms/drug therapy , Doxorubicin/chemistry , Osteosarcoma/drug therapy , Antibiotics, Antineoplastic/metabolism , Antibiotics, Antineoplastic/pharmacology , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Calcium Carbonate/chemistry , Caspases/metabolism , Cell Line, Tumor/drug effects , Cell Proliferation/drug effects , Crystallography, X-Ray , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/metabolism , Delayed-Action Preparations/pharmacology , Doxorubicin/metabolism , Doxorubicin/pharmacology , Drug Compounding , Drug Screening Assays, Antitumor , Drug Stability , Humans , Hydrogen-Ion Concentration , L-Lactate Dehydrogenase/metabolism , Nanoparticles/chemistry , Nanoparticles/metabolism , Nanoparticles/ultrastructure
13.
J Biomed Mater Res B Appl Biomater ; 98(1): 30-7, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21504052

ABSTRACT

Malaysian sea cucumber was incorporated into hydrogel formulation by using electron beam irradiation technique and was introduced as novel cross-linked Gamat Hydrogel dressing. This study investigated whether Gamat Hydrogel enhanced repair of deep partial skin thickness burn wound in rats and its possible mechanism. Wounds were treated with either Gamat Hydrogel, control hydrogel, OpSite® film dressing or left untreated. Skin samples were taken at 7, 14, 21, and 28 days post burn for histological and molecular evaluations. Gamat Hydrogel markedly enhanced wound contraction and improved histological reorganization of the regenerating tissue. Furthermore, the dressing modulated the inflammatory responses, stimulated the activation and proliferation of fibroblasts, and enhanced rapid production of collagen fiber network with a consequently shorter healing time. The level of proinflammatory cytokines; IL-1α, IL-1ß, and IL-6, were significantly reduced in Gamat Hydrogel treated wounds compared with other groups as assessed by reverse transcription-polymerase chain reaction (RT-PCR). In summary, our results showed that Gamat Hydrogel promoted burn wound repair via a complex mechanism involving stimulation of tissue regeneration and regulation of pro-inflammatory cytokines. The resultant wound healing effects were attributed to the synergistic effect of the hydrogel matrix and incorporated sea cucumber.


Subject(s)
Bandages, Hydrocolloid , Burns/therapy , Hydrogels/pharmacology , Stichopus/chemistry , Wound Healing/drug effects , Animals , Burns/metabolism , Burns/pathology , Cell Proliferation/drug effects , Cytokines/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Hydrogels/chemistry , Rats , Rats, Sprague-Dawley , Skin/metabolism , Skin/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...