Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Anal Bioanal Chem ; 409(9): 2341-2351, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28091714

ABSTRACT

The total haemoglobin (Hb) concentration in blood is one of the most frequently measured analytes in clinical medicine because of its significance for evaluating the health state of a human. The spectrophotometric cyanmethaemoglobin (HiCN) method is the internationally accepted conventional reference method to determine this biomarker. It is frequently used in clinical routine diagnostics but is not traceable to the International System of Units and thus does not meet highest metrological demands. A further critical issue is the toxicity of the necessary potassium cyanide. Different methods to solve these problems are reported here. They all were validated against the HiCN method in an interlaboratory comparison by measuring the total Hb concentration present in the certified reference material JCCRM 912-2M. Methods considered were the spectrophotometric alkaline haematin detergent (AHD) method as well as several isotope dilution (ID)-based approaches. The latter include inductively coupled plasma mass spectrometry (ICP-MS), species-specific (SS) ICP-MS, organic MS and Raman spectrometry. Graphical abstract ᅟ.


Subject(s)
Hemoglobins/analysis , Laboratories/organization & administration , Humans , Mass Spectrometry , Spectrum Analysis, Raman
3.
Appl Spectrosc ; 70(2): 279-88, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26903563

ABSTRACT

The traceability of measured quantities is an essential condition when linking process control parameters to guaranteed physical properties of a product. Using Raman spectroscopy as an analytical tool for monitoring the production of Cu(In1-xGax)Se2 thin-film solar cells, proper calibration with regard to chemical composition and lateral dimensions is a key prerequisite. This study shows how the multiple requirements of calibration in Raman microscopy might be addressed. The surface elemental composition as well as the integral elemental composition of the samples is traced back by reference-free X-ray fluorescence analysis. Reference Raman spectra are then generated for the relevant Cu(In1-xGax)Se2 related compounds. The lateral dimensions are calibrated with the help of a novel dimensional standard whose regular structures have been traced back to the International System of Units by metrological scanning force microscopy. On this basis, an approach for the quantitative determination of surface coverage values from lateral Raman mappings is developed together with a complete uncertainty budget. Raman and X-ray spectrometry have here been proven as complementary nondestructive methods combining surface sensitivity and in-depth information on elemental and species distribution for the reliable quality control of Cu(In1-xGax)Se2 absorbers and Cu(In1-xGax)3Se5 surface layer formation.

4.
Metallomics ; 4(12): 1239-44, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23151869

ABSTRACT

Two reference measurement procedures are presented here that allow the determination of the iron saturation in human transferrin, based on different molecular properties. The results, directly derived from the number of ions bound to the protein molecule, are traceable to the SI. Up to now, the iron saturation has only been deduced indirectly from the amount-of-substance ratio of serum iron to transferrin in serum. Interlaboratory tests have shown the need for more accurate methods, as the results from many participant test samples for both parameters do not lie within the acceptable range of deviation given by relevant guidelines when different methods or kits are applied. Using isotope dilution, an HPLC ICP-MS procedure was developed in compliance with the requirements of a primary reference measurement procedure. In this manner, the iron saturation was measured with an associated relative expanded measurement uncertainty of 4%. Based on the results, a straightforward Raman procedure was evolved, which allows the determination of the iron saturation in transferrin with an associated relative expanded uncertainty of 7%.


Subject(s)
Iron/blood , Transferrin/chemistry , Chromatography, High Pressure Liquid , Humans , Indicator Dilution Techniques , Iron Isotopes , Mass Spectrometry/methods , Multivariate Analysis , Reference Standards , Spectrum Analysis, Raman
6.
Analyst ; 136(19): 3956-61, 2011 Oct 07.
Article in English | MEDLINE | ID: mdl-21818493

ABSTRACT

Double isotope dilution surface-enhanced Raman scattering (double IDSERS) is qualified as a method for accurate and precise determination of biomarkers in human blood serum. Providing a full evaluation of the measurement uncertainty as well as traceability to a reference material sets the procedure in line with the requirements of a primary ratio method. Data evaluation is based on a partial least squares (PLS) model, whose prediction ability is validated from quantifying the uric acid concentration in both an artificial reference solution and a real human blood serum sample. With the proposed approach, the uric acid serum concentration can be determined with an uncertainty of 1.6% at a confidence level of 95%.


Subject(s)
Uric Acid/blood , Biomarkers/blood , Humans , Least-Squares Analysis , Radioisotope Dilution Technique , Sensitivity and Specificity , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL
...