Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomater Sci ; 12(10): 2561-2578, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38602364

ABSTRACT

The targeted delivery of pharmacologically active molecules, metabolites, and growth factors to the brain parenchyma has become one of the major challenges following the onset of neurodegeneration and pathological conditions. The therapeutic effect of active biomolecules is significantly impaired after systemic administration in the central nervous system (CNS) because of the blood-brain barrier (BBB). Therefore, the development of novel therapeutic approaches capable of overcoming these limitations is under discussion. Exosomes (Exo) are nano-sized vesicles of endosomal origin that have a high distribution rate in biofluids. Recent advances have introduced Exo as naturally suitable bio-shuttles for the delivery of neurotrophic factors to the brain parenchyma. In recent years, many researchers have attempted to regulate the delivery of Exo to target sites while reducing their removal from circulation. The encapsulation of Exo in natural and synthetic hydrogels offers a valuable strategy to address the limitations of Exo, maintaining their integrity and controlling their release at a desired site. Herein, we highlight the current and novel approaches related to the application of hydrogels for the encapsulation of Exo in the field of CNS tissue engineering.


Subject(s)
Drug Delivery Systems , Exosomes , Hydrogels , Exosomes/chemistry , Exosomes/metabolism , Hydrogels/chemistry , Hydrogels/administration & dosage , Humans , Animals , Central Nervous System/metabolism , Central Nervous System/drug effects , Blood-Brain Barrier/metabolism , Tissue Engineering , Drug Carriers/chemistry
2.
Int J Biol Macromol ; 260(Pt 2): 129633, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38253146

ABSTRACT

Here, mitochondria were isolated from mesenchymal stem cells (MSCs) after being treated with mitochondria-stimulating substrates, 50 µM metformin (Met), and 40 µM dichloroacetic acid (DCA). The isolated mitochondria (2 × 107 particles) were characterized and encapsulated inside 100 µl hydrogel composed of alginate (3 % w/v; Alg)/gelatin (Gel; 1 % w/v) enriched with 1 µM pyrrole (Pyr) solidified in the presence of 0.2 M FeCl3. The physicochemical properties and cytocompatibility of prepared hydrogels were assessed using FTIR, swelling, biodegradation, porosity assays, and scanning electron microscopy (SEM). The mitochondria-bearing hydrogel was injected into the ischemic area of rat hearts. FTIR absorption bands represented that the addition of FeCl3 led to polypyrrole (PPy) formation, polysaccharide oxidation, and interaction between Alg and Gel. SEM images exhibited porous structure and the size of pores was reduced in Alg/Gel + PPy group compared to Alg + PPy hydrogel. Based on the data, both Alg + PPy and Alg/Gel + PPy hydrogels can preserve the integrity and morphology of loaded mitochondria. It was noted that Alg/Gel + PPy hydrogel possessed a higher swelling ratio, degradation, and porosity compared to Alg + PPy group. Data confirmed that Alg/Gel + PPy hydrogel containing 1 µM Pyr yielded the highest survival rate compared to groups with 2 and 4 µM Pyr (p < 0.05). Injection of mitochondria-loaded Alg/Gel + PPy hydrogel yielded significant restoration of left ventricle thickness compared to the infarction, mitochondria, and Alg/Gel + PPy hydrogel groups 14 days post-injection (p < 0.05). Histological analyses revealed a significant increase of vWF+ capillaries and α-SMA+ arterioles in the mitochondria-loaded Alg/Gel + PPy hydrogel group (p < 0.05). Immunofluorescence imaging revealed the ability of rat cardiomyocytes to uptake mitochondria alone or after being loaded into Alg/Gel + PPy hydrogel. These effects were evident in the Alg/Gel + PPy group. Taken together, electroconductive Alg-based hydrogels are suitable platforms for the transplantation of cells and organelles and the regeneration of ischemic heart changes.


Subject(s)
Alginates , Chlorides , Ferric Compounds , Myocardial Infarction , Rats , Animals , Alginates/chemistry , Polymers/chemistry , Hydrogels/pharmacology , Hydrogels/chemistry , Angiogenesis , Pyrroles/chemistry , Myocardial Infarction/drug therapy , Mitochondria
3.
Carbohydr Polym ; 326: 121614, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38142075

ABSTRACT

Massive bleeding control plays the main role in saving people's lives in emergency situations. Herein, modified cellulose-based nanocomposite sponges by polydopamine (PDA) and laponite nano-clay was developed to sturdily deal with non-compressible lethal severe bleeding. PDA accomplishes supreme adhesion in the bleeding site (∼405 kPa) to form strong physical barrier and seal the position. Sponges super porous (∼70 % porosity) and super absorbent capacity (48 g blood absorbed per 1 g sponge) by concentrating the blood cells and platelets provides the requirements for primary hemostasis. Synergistically, the nanocomposite sponges' intelligent chemical structure induces hemostasis by activation of the XI, IX, X, II and FVII factors of intrinsic and extrinsic coagulation pathways. Excellent hemostatic performance of sponges in-vitro was assessed by RBC accumulation (∼100 %), blood clotting index (∼10 %), platelet aggregation/activation (∼93 %) and clotting time. The nanocomposite sponges depicted super performance in the fatal high-pressure non-compressible hemorrhage model by reducing of >2, 15 and 3 times in the bleeding amount at New Zealand rabbit's heart and liver, and rat's femoral artery bleeding models, respectively compared to commercial hemostatic agents (Pvalue˂0.001). The in-vivo host response results exhibited biosafety with no systemic and significant local inflammatory response by hematological, pathological and biochemical parameters assessments.


Subject(s)
Hemostatics , Nanocomposites , Humans , Rabbits , Rats , Animals , Adhesives/pharmacology , Clay , Citric Acid , Hemostasis , Hemostatics/chemistry , Hemorrhage/drug therapy , Cellulose/pharmacology , Cellulose/chemistry , Nanocomposites/chemistry
4.
Int J Pharm ; 642: 123095, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37268031

ABSTRACT

Salinomycin is a polyether compound that exhibits strong anticancer activity and is known as the cancer stem cell inhibitor that reached clinical testing. The rapid elimination of nanoparticles from the bloodstream by the mononuclear phagocyte system (MPS), the liver, and the spleen, accompanied by protein corona (PC) formation, restricts in vivo delivery of nanoparticles in the tumor microenvironment (TME). The DNA aptamer (TA1) that successfully targets the overexpressed CD44 antigen on the surface of breast cancer cells suffers strongly from PC formation in vivo. Thus, cleverly designed targeted strategies that lead to the accumulation of nanoparticles in the tumor become a top priority in the drug delivery field. In this work, dual redox/pH-sensitive poly (ß-amino ester) copolymeric micelles modified with CSRLSLPGSSSKpalmSSS peptide and TA1 aptamer, as dual targeting ligands, were synthesized and fully characterized by physico-chemical methods. These biologically transformable stealth NPs were altered into the two ligand-capped (SRL-2 and TA1) NPs for synergistic targeting of the 4T1 breast cancer model after exposure to the TME. The PC formation was reduced sharply in Raw 264.7 cells by increasing the CSRLSLPGSSSKpalmSSS peptide concentration in modified micelles. Surprisingly, in vitro and in vivo biodistribution findings showed that dual targeted micelle accumulation in the TME of 4T1 breast cancer model was significantly higher than that of single modified formulation, along with deep penetration 24 h after intraperitoneal injection. Also, an in vivo treatment study showed remarkable tumor growth inhibition in 4T1 tumor-bearing Balb/c mice, compared to different formulations, with a 10% lower therapeutic dose (TD) of SAL that was confirmed by hematoxylin and eosin staining (H&E) and the TUNEL assay. Overall, in this study, we developed smart transformable NPs in which the body's own engineering systems alter their biological identity, which resulted in a reduction in therapeutic dosage along with a lowered off-target effect.


Subject(s)
Nanoparticles , Neoplasms , Animals , Mice , Micelles , Tissue Distribution , Cell Line, Tumor , Drug Delivery Systems/methods , Nanoparticles/chemistry , Treatment Outcome , Peptides/pharmacology , Mice, Inbred BALB C
5.
J Biomater Sci Polym Ed ; 33(11): 1415-1434, 2022 08.
Article in English | MEDLINE | ID: mdl-35380915

ABSTRACT

This study developed a platform for fabricating small-diameter vascular grafts using electrospun poly(carbonate-urea)urethane bonded with different concentrations of POSS nanocage. The characteristics of electrospun POSS-PCUUs were investigated by ATR-FTIR, 1HNMR, EDS, SEM, AFM, WCA, and DSC analyses. Besides, mechanical attributes such as tensile strength, modulus, elastic recovery, and inelastic behaviors were monitored. The survival rate and cellular attachment capacity were studied using human endothelial cells during a 7-day culture period. The results showed that electrospun nanofibers with 6 wt.% POSS-PCUU had better surface properties in terms of richness of POSS nanocage with notable improved mechanical strength and hysteresis loss properties (p < 0.05). The surface roughness of electrospun 6 wt.% POSS-PCUU reached 646 ± 10 nm with statistically significant differences compared to the control PCUU and groups containing 2, 4 wt.% POSS-PCUU (p < 0.05). The addition of 6 wt.% POSS increased the ultimate mechanical strength of nanofibers related to control PCUU and other groups (p < 0.05). The expansion of human endothelial cells on the 6 wt.% POSS-PCUU surface increased the viability reaching maximum levels on day 7 (p < 0.05). Immunofluorescence imaging using DAPI staining displayed the formation single-layer endothelial barrier at the luminal surface, indicating an appropriate cell-to-cell interaction.


Subject(s)
Nanocomposites , Urethane , Carbonates , Endothelial Cells , Humans , Nanocomposites/chemistry , Surface Properties , Urea
SELECTION OF CITATIONS
SEARCH DETAIL
...