Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(1): e2219054120, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36574676

ABSTRACT

Bioprosthetic heart valves (BHV), made from glutaraldehyde-fixed xenografts, are widely used for surgical and transcatheter valve interventions but suffer from limited durability due to structural valve degeneration (SVD). We focused on metabolic syndrome (MetS), a risk factor for SVD and a highly prevalent phenotype in patients affected by valvular heart disease with a well-recognized cluster of comorbidities. Multicenter patient data (N = 251) revealed that patients with MetS were at significantly higher risk of accelerated SVD and required BHV replacement sooner. Using a next-generation proteomics approach, we identified significantly differential proteomes from leaflets of explanted BHV from MetS and non-MetS patients (N = 24). Given the significance of protein infiltration in MetS-induced SVD, we then demonstrated the protective effects of polyoxazoline modification of BHV leaflets to mitigate MetS-induced BHV biomaterial degeneration (calcification, tissue cross-linking, and microstructural changes) in an ex vivo serum model and an in vivo with MetS rat subcutaneous implants.


Subject(s)
Bioprosthesis , Heart Valve Prosthesis , Metabolic Syndrome , Humans , Animals , Rats , Metabolic Syndrome/complications , Heart Valves , Risk Factors , Aortic Valve/surgery
2.
Biomaterials ; 289: 121782, 2022 10.
Article in English | MEDLINE | ID: mdl-36099713

ABSTRACT

Bioprosthetic heart valves (BHV) fabricated from heterograft tissue, such as glutaraldehyde pretreated bovine pericardium (BP), are the most frequently used heart valve replacements. BHV durability is limited by structural valve degeneration (SVD), mechanistically associated with calcification, advanced glycation end products (AGE), and serum protein infiltration. We investigated the hypothesis that anti-AGE agents, Aminoguanidine, Pyridoxamine [PYR], and N-Acetylcysteine could mitigate AGE-serum protein SVD mechanisms in vitro and in vivo, and that these agents could mitigate calcification or demonstrate anti-calcification interactions with BP pretreatment with ethanol. In vitro, each of these agents significantly inhibited AGE-serum protein infiltration in BP. However, in 28-day rat subdermal BP implants only orally administered PYR demonstrated significant inhibition of AGE and serum protein uptake. Furthermore, BP PYR preincubation of BP mitigated AGE-serum protein SVD mechanisms in vitro, and demonstrated mitigation of both AGE-serum protein uptake and reduced calcification in vivo in 28-day rat subdermal BP explants. Inhibition of BP calcification as well as inhibition of AGE-serum protein infiltration was observed in 28-day rat subdermal BP explants pretreated with ethanol followed by PYR preincubation. In conclusion, AGE-serum protein and calcification SVD pathophysiology are significantly mitigated by both PYR oral therapy and PYR and ethanol pretreatment of BP.


Subject(s)
Bioprosthesis , Calcinosis , Heart Valve Prosthesis , Acetylcysteine , Animals , Blood Proteins , Cattle , Ethanol/pharmacology , Glutaral , Glycation End Products, Advanced , Pyridoxamine , Rats
3.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35131859

ABSTRACT

Bioprosthetic heart valves (BHV) fabricated from glutaraldehyde-fixed heterograft tissue, such as bovine pericardium (BP), are widely used for treating heart valve disease, a group of disorders that affects millions. Structural valve degeneration (SVD) of BHV due to both calcification and the accumulation of advanced glycation end products (AGE) with associated serum proteins limits durability. We hypothesized that BP modified with poly-2-methyl-2-oxazoline (POZ) to inhibit protein entry would demonstrate reduced accumulation of AGE and serum proteins, mitigating SVD. In vitro studies of POZ-modified BP demonstrated reduced accumulation of serum albumin and AGE. BP-POZ in vitro maintained collagen microarchitecture per two-photon microscopy despite AGE incubation, and in cell culture studies was associated with no change in tumor necrosis factor-α after exposure to AGE and activated macrophages. Comparing POZ and polyethylene glycol (PEG)-modified BP in vitro, BP-POZ was minimally affected by oxidative conditions, whereas BP-PEG was susceptible to oxidative deterioration. In juvenile rat subdermal implants, BP-POZ demonstrated reduced AGE formation and serum albumin infiltration, while calcification was not inhibited. However, BP-POZ rat subdermal implants with ethanol pretreatment demonstrated inhibition of both AGE accumulation and calcification. Ex vivo laminar flow studies with human blood demonstrated BP-POZ enhanced thromboresistance with reduced white blood cell accumulation. We conclude that SVD associated with AGE and serum protein accumulation can be mitigated through POZ functionalization that both enhances biocompatibility and facilitates ethanol pretreatment inhibition of BP calcification.


Subject(s)
Heart Valve Diseases/drug therapy , Heart Valve Diseases/therapy , Oxazoles/pharmacology , Pericardium/drug effects , Animals , Biocompatible Materials , Calcification, Physiologic/drug effects , Calcinosis/drug therapy , Calcinosis/metabolism , Calcinosis/therapy , Cell Line , Collagen/metabolism , Ethanol/pharmacology , Glycation End Products, Advanced/metabolism , Heart Valve Diseases/metabolism , Heart Valve Prosthesis , Heterografts/drug effects , Humans , Male , Oxidation-Reduction/drug effects , Pericardium/metabolism , Rats , Rats, Sprague-Dawley , THP-1 Cells
4.
Acta Biomater ; 123: 275-285, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33444798

ABSTRACT

Glutaraldehyde cross-linked heterograft tissues, bovine pericardium (BP) or porcine aortic valves, are the leaflet materials in bioprosthetic heart valves (BHV) used in cardiac surgery for heart valve disease. BHV fail due to structural valve degeneration (SVD), often with calcification. Advanced glycation end products (AGE) are post-translational, non-enzymatic reaction products from sugars reducing proteins. AGE are present in SVD-BHV clinical explants and are not detectable in un-implanted BHV. Prior studies modeled BP-AGE formation in vitro with glyoxal, a glucose breakdown product, and serum albumin. However, glucose is the most abundant AGE precursor. Thus, the present studies investigated the hypothesis that BHV susceptibility to glucose related AGE, together with serum proteins, results in deterioration of collagen structure and mechanical properties. In vitro experiments studied AGE formation in BP and porcine collagen sponges (CS) comparing 14C-glucose and 14C-glyoxal with and without bovine serum albumin (BSA). Glucose incorporation occurred at a significantly lower level than glyoxal (p<0.02). BSA co-incubations demonstrated reduced glyoxal and glucose uptake by both BP and CS. BSA incubation caused a significant increase in BP mass, enhanced by glyoxal co-incubation. Two-photon microscopy of BP showed BSA induced disruption of collagen structure that was more severe with glucose or glyoxal co-incubation. Uniaxial testing of CS demonstrated that glucose or glyoxal together with BSA compared to controls, caused accelerated deterioration of viscoelastic relaxation, and increased stiffness over a 28-day time course. In conclusion, glucose, glyoxal and BSA uniquely contribute to AGE-mediated disruption of heterograft collagen structure and deterioration of mechanical properties.


Subject(s)
Heart Valve Prosthesis , Animals , Cattle , Collagen , Glucose/pharmacology , Glycation End Products, Advanced , Glyoxal , Heterografts , Serum Albumin , Serum Albumin, Bovine , Swine
5.
JACC Basic Transl Sci ; 5(8): 755-766, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32875167

ABSTRACT

Valvular heart diseases are associated with significant cardiovascular morbidity and mortality, and often require surgical and/or percutaneous repair or replacement. Valve replacement is limited to mechanical and biological prostheses, the latter of which circumvent the need for lifelong anticoagulation but are subject to structural valve degeneration (SVD) and failure. Although calcification is heavily studied, noncalcific SVD, which represent roughly 30% of BHV failures, is relatively underinvestigated. This original work establishes 2 novel and interacting mechanisms-glycation and serum albumin incorporation-that occur in clinical valves and are sufficient to induce hallmarks of structural degeneration as well as functional deterioration.

6.
Chemphyschem ; 19(22): 3035-3043, 2018 11 19.
Article in English | MEDLINE | ID: mdl-30239091

ABSTRACT

Magnetic nanoparticles (MNPs) functionalized with various enzymes (amyloglucosidase, glucose oxidase and horseradish peroxidase) were used to perform biocatalytic cascades in two different states, solute suspension or aggregated, produced in the absence or presence of an external magnetic field. The biocatalytic reactions proceeded through bulk solution diffusion of intermediate substrates or substrate channeling, when the systems were dispersed or aggregated, respectively. The both pathways have shown very similar kinetics, unless the intermediate substrate was consumed by an additional biocatalytic process called "filter" for brevity. In the presence of the "filter" process, the diffusional process in the bulk solution was significantly inhibited, while the process based on the substrate channeling was still active. The systems were switched reversibly between the inhibited dispersed state and the active aggregated state by removing and applying the external magnetic field, respectively. The signal-controlled biocatalytic cascades were considered as Boolean logic circuits with the inputs consisting of biomolecules and the magnetic field on-off.

7.
Nanoscale ; 10(3): 1356-1365, 2018 Jan 18.
Article in English | MEDLINE | ID: mdl-29297526

ABSTRACT

A new biomimetic nanoreactor design, MaBiDz, is presented based on a copolymer brush in combination with superparamagnetic nanoparticles. This cellular nanoreactor features two species of magnetic particles, each functionalized with two components of a binary deoxyribozyme system. In the presence of a target mRNA analyte and a magnetic field, the nanoreactor is assembled to form a biocompartment enclosed by the polymeric brush that enables catalytic function of the binary deoxyribozyme with enhanced kinetics. MaBiDz was demonstrated here as a cellular sensor for rapid detection and imaging of a target mRNA biomarker for metastatic breast cancer, and its function shows potential to be expanded as a biomimetic organelle that can downregulate the activity of a target mRNA biomarker.


Subject(s)
DNA, Catalytic/chemistry , Magnetic Fields , Magnetite Nanoparticles/chemistry , Biomarkers, Tumor/analysis , Humans , MCF-7 Cells , Nuclear Proteins , Polymers , RNA, Messenger/analysis , Twist-Related Protein 1
8.
J Am Chem Soc ; 139(35): 12117-12120, 2017 09 06.
Article in English | MEDLINE | ID: mdl-28817270

ABSTRACT

Detection of specific mRNA in living cells has attracted significant attention in the past decade. Probes that can be easily delivered into cells and activated at the desired time can contribute to understanding translation, trafficking and degradation of mRNA. Here we report a new strategy termed magnetic field-activated binary deoxyribozyme (MaBiDZ) sensor that enables both efficient delivery and temporal control of mRNA sensing by magnetic field. MaBiDZ uses two species of magnetic beads conjugated with different components of a multicomponent deoxyribozyme (DZ) sensor. The DZ sensor is activated only in the presence of a specific target mRNA and when a magnetic field is applied. Here we demonstrate that MaBiDZ sensor can be internalized in live MCF-7 breast cancer cells and activated by a magnetic field to fluorescently report the presence of specific mRNA, which are cancer biomarkers.


Subject(s)
Magnetics , RNA, Messenger/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cells, Cultured , DNA, Catalytic/metabolism , Female , Humans , MCF-7 Cells
9.
Electroanalysis ; 29(2): 398-408, 2017 02.
Article in English | MEDLINE | ID: mdl-29379265

ABSTRACT

An array of four independently wired indium tin oxide (ITO) electrodes was used for electrochemically stimulated DNA release and activation of DNA-based Identity, AND and XOR logic gates. Single-stranded DNA molecules were loaded on the mixed poly(N,N-di-methylaminoethyl methacrylate) (PDMAEMA)/poly-(methacrylic acid) (PMAA) brush covalently attached to the ITO electrodes. The DNA deposition was performed at pH 5.0 when the polymer brush is positively charged due to protonation of tertiary amino groups in PDMAE-MA, thus resulting in electrostatic attraction of the negatively charged DNA. By applying electrolysis at -1.0 V(vs. Ag/AgCl reference) electrochemical oxygen reduction resulted in the consumption of hydrogen ions and local pH increase near the electrode surface. The process resulted in recharging the polymer brush to the negative state due to dissociation of carboxylic groups of PMAA, thus repulsing the negatively charged DNA and releasing it from the electrode surface. The DNA release was performed in various combinations from different electrodes in the array assembly. The released DNA operated as input signals for activation of the Boolean logic gates. The developed system represents a step forward in DNA computing, combining for the first time DNA chemical processes with electronic input signals.

10.
Appl Biochem Biotechnol ; 176(4): 1114-30, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25935220

ABSTRACT

Production costs of cellulosic biofuels can be lowered if cellulases are recovered and reused using particulate carriers that can be extracted after biomass hydrolysis. Such enzyme recovery was recently demonstrated using enzymogel nanoparticles with grafted polymer brushes loaded with cellulases. In this work, cellulase (NS50013) and ß-glucosidase (Novozyme 188) were immobilized on enzymogels made of poly(acrylic acid) polymer brushes grafted to the surface of silica nanoparticles. Response surface methodology was used to model effects of pH and temperature on hydrolysis and recovery of free and attached enzymes. Hydrolysis yields using both enzymogels and free cellulase and ß-glucosidase were highest at the maximum temperature tested, 50 °C. The optimal pH for cellulase enzymogels and free enzyme was 5.0 and 4.4, respectively, while both free ß-glucosidase and enzymogels had an optimal pH near 4.4. Highest hydrolysis sugar concentrations with cellulase and ß-glucosidase enzymogels were 69 and 53 % of those with free enzymes, respectively. Enzyme recovery using enzymogels decreased with increasing pH, but cellulase recovery remained greater than 88 % throughout the operating range of pH values less than 5.0 and was greater than 95 % at pH values below 4.3. Recovery of ß-glucosidase enzymogels was not affected by temperature and had little impact on cellulase recovery.


Subject(s)
Biofuels , Cellulase/chemistry , Cellulose/chemistry , Enzymes, Immobilized/chemistry , Nanoparticles/chemistry , beta-Glucosidase/chemistry , Acrylic Resins/chemistry , Biomass , Equipment Reuse , Factor Analysis, Statistical , Gels , Hydrogen-Ion Concentration , Kinetics , Silicon Dioxide/chemistry , Temperature
11.
Appl Biochem Biotechnol ; 175(6): 2872-82, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25564204

ABSTRACT

Cellulase and ß-glucosidase were adsorbed on a polyacrylic acid polymer brush grafted on silica nanoparticles to produce enzymogels as a form of enzyme immobilization. Enzyme loading on the enzymogels was increased to a saturation level of approximately 110 µg (protein) mg(-1) (particle) for each enzyme. Enzymogels with varied enzyme loadings were then used to determine the impact on hydrolysis rate and enzyme recovery. Soluble sugar concentrations during the hydrolysis of filter paper and Solka-Floc with the enzymogels were 45 and 53%, respectively, of concentrations when using free cellulase. ß-Glucosidase enzymogels showed lower performance; hydrolyzate glucose concentrations were just 38% of those using free enzymes. Increasing enzyme loading on the enzymogels did not reduce net efficacy for cellulase and improved efficacy for ß-glucosidase. The use of free cellulases and cellulase enzymogels resulted in hydrolyzates with different proportions of cellobiose and glucose, suggesting differential attachment or efficacy of endoglucanases, exoglucanases, and ß-glucosidases present in cellulase mixtures. When loading ß-glucosidase individually, higher enzyme loadings on the enzymogels produced higher hydrolyzate glucose concentrations. Approximately 96% of cellulase and 66 % of ß-glucosidase were recovered on the enzymogels, while enzyme loading level did not impact recovery for either enzyme.


Subject(s)
Cellulase/chemistry , Fungal Proteins/chemistry , beta-Glucosidase/chemistry , Aspergillus niger/enzymology , Cellulose/metabolism , Enzymes, Immobilized/chemistry , Hydrolysis , Nanoparticles/chemistry , Trichoderma/enzymology
12.
J Phys Chem B ; 118(24): 6775-84, 2014 Jun 19.
Article in English | MEDLINE | ID: mdl-24873717

ABSTRACT

Biocatalytic reactions operating in parallel and resulting in reduction of NAD(+) or oxidation of NADH were used to mimic 3-input majority and minority logic gates, respectively. The substrates corresponding to the enzyme reactions were used as the input signals. When the input signals were applied at their high concentrations, defined as logic 1 input values, the corresponding biocatalytic reactions were activated, resulting in changes of the NADH concentration defined as the output signal. The NADH concentration changes were dependent on the number of parallel reactions activated by the input signals. The absence of the substrates, meaning their logic 0 input values, kept the reactions mute with no changes in the NADH concentration. In the system mimicking the majority function, the enzyme-biocatalyzed reactions resulted in a higher production of NADH when more than one input signal was applied at the logic 1 value. Another system mimicking the minority function consumed more NADH, thus leaving a smaller residual output signal, when more than one input signal was applied at the logic 1 value. The performance of the majority gate was improved by processing the output signal through a filter system in which another biocatalytic reaction consumed a fraction of the output signal, thus reducing its physical value to zero when the logic 0 value was obtained. The majority gate was integrated with a preceding AND logic gate to illustrate the possibility of complex networks. The output signal, NADH, was also used to activate a process mimicking drug release, thus illustrating the use of the majority gate in decision-making biomedical systems. The 3-input majority gate was also used as a switchable AND/OR gate when one of the input signals was reserved as a command signal, switching the logic operation for processing of the other two inputs. Overall, the designed majority and minority logic gates demonstrate novel functions of biomolecular information processing systems.


Subject(s)
Enzymes/metabolism , Alginates/chemistry , Algorithms , Biocatalysis , Electrochemical Techniques , Electrodes , Enzymes/chemistry , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , NAD/chemistry , Nanoparticles/chemistry , Oxidation-Reduction , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Rhodamines/chemistry , Silicon Dioxide/chemistry , Spectrophotometry, Ultraviolet
13.
Angew Chem Int Ed Engl ; 53(2): 483-7, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24214279

ABSTRACT

The enzymogel nanoparticle made of a magnetic core and polymer brush shell demonstrates a novel type of remote controlled phase-boundary biocatalysis that involves remotely directed binding to and engulfing insoluble substrates, high mobility, and stability of the catalytic centers. The mobile enzymes reside in the polymer brush scaffold and shuttle between the enzymogel interior and surface of the engulfed substrate in the bioconversion process. Biocatalytic activity of the mobile enzymes is preserved in the enzymogel while the brush-like architecture favors the efficient interfacial interaction when the enzymogel spreads over the substrate and extends substantially the reaction area as compared with rigid particles.


Subject(s)
Biocatalysis , Cellulase/chemistry , Enzymes, Immobilized/chemistry , Gels/chemistry , Nanoparticles/chemistry , Acrylic Resins/chemistry , Fluorescent Dyes/chemistry , Hydrogen-Ion Concentration , Magnetic Fields , Microscopy, Atomic Force , Osmolar Concentration , Particle Size , Silicon Dioxide/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...