Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 17507, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30504826

ABSTRACT

Resistivity, ρ(T), and magnetoresistance (MR) are investigated in the Cu2ZnSnxGe1-xS4 single crystals, obtained by the chemical vapor transport method, between x = 0-0.70, in the temperature range of T ~ 50-300 K in pulsed magnetic field of B up to 20 T. The Mott variable-range hopping (VRH) conductivity is observed within broad temperature intervals, lying inside that of T ~ 80-180 K for different x. The nearest-neighbor hopping conductivity and the charge transfer, connected to activation of holes into the delocalized states of the acceptor band, are identified above and below the Mott VRH conduction domain, respectively. The microscopic electronic parameters, including width of the acceptor band, the localization radius and the density of the localized states at the Fermi level, as well as the acceptor concentration and the critical concentration of the metal-insulator transition, are obtained with the analysis of the ρ(T) and MR data. All the parameters above exhibit extremums near x = 0.13, which are attributable mainly to the transition from the stannite crystal structure at x = 0 to the kesterite-like structure near x = 0.13. The detailed analysis of the activation energy in the low-temperature interval permitted estimations of contributions from different crystal phases of the border compounds into the alloy structure at different compositions.

2.
Sci Rep ; 7(1): 10685, 2017 09 06.
Article in English | MEDLINE | ID: mdl-28878248

ABSTRACT

Recent development of the thin film solar cells, based on quaternary compounds, has been focused on the Ge contain compounds and their solid solutions. However, for effective utilization of Cu2ZnGeS4, deeper investigations of its transport properties are required. In the present manuscript, we investigate resistivity, ρ (T), magnetoresistance and Hall effect in p-type Cu2ZnGeS4 single crystals in pulsed magnetic fields up to 20 T. The dependence of ρ (T) in zero magnetic field is described by the Mott type of the variable-range hopping (VRH) charge transfer mechanism within a broad temperature interval of ~100-200 K. Magnetoresistance contains the positive and negative components, which are interpreted by the common reasons of doped semiconductors. On the other hand, a joint analysis of the resistivity and magnetoresistance data has yielded series of important electronic parameters and permitted specification of the Cu2ZnGeS4 conductivity mechanisms outside the temperature intervals of the Mott VRH conduction. The Hall coefficient is negative, exhibiting an exponential dependence on temperature, which is quite close to that of ρ(T). This is typical of the Hall effect in the domain of the VRH charge transfer.

SELECTION OF CITATIONS
SEARCH DETAIL
...