Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Vector Ecol ; 44(1): 48-56, 2019 06.
Article in English | MEDLINE | ID: mdl-31124233

ABSTRACT

Resistance to agricultural pesticides is an important and insufficiently studied concern for pest and disease vector research. We determined the malathion resistance of species in the Anopheles maculipennis mosquito group in a habitat near Novosibirsk, Russia. Most of the 851 individuals we measured were members of the Anopheles messeae s.l. complex (An. messeae and An. daciae species). The LC50 value for malathion was 0.052 mg/L for the mixed specimens, and we failed to find any differences between species. The LC50 value was within the range of values for malathion resistance of Anopheles stephensi and Culex quinquefasciatus. As the main resistance mechanism to organophosphate and carbamate insecticides is a single mononucleotide substitution in the ace-1 gene, we searched for this mutation in An. messeae s.l. and An. beklemishevi by restriction analysis. This mutation was not found in 347 of the specimens. We sequenced the ace-1 gene fragment for 24 specimens from four species of the Anopheles maculipennis group, including An. messeae, An. daciae, An. atroparvus, and An. beklemishevi. These specimens harbored a nucleotide substitution in the triplet where a mutation can lead to insecticide resistance, but this substitution would make it difficult for the resistance to develop. Since the studied specimens belong to branches of the Palearctic portion of the Anopheles maculipennis group, we suspect that all other Palearctic species of this group would have difficulties harboring the ace-1 mutation that would lead to organophosphate and carbamate resistance.


Subject(s)
Anopheles/drug effects , Insecticide Resistance/genetics , Insecticides/pharmacology , Malathion/pharmacology , Animal Distribution , Animals , Anopheles/genetics , Genetic Markers , Kazakhstan , Malaria/transmission , Mosquito Vectors , Russia
2.
BMC Evol Biol ; 19(Suppl 1): 48, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30813886

ABSTRACT

BACKGROUND: Maternally inherited Wolbachia symbionts infect D. melanogaster populations worldwide. Infection rates vary greatly. Genetic diversity of Wolbachia in D. melanogaster can be subdivided into several closely related genotypes coinherited with certain mtDNA lineages. mtDNA haplotypes have the following global distribution pattern: mtDNA clade I is mostly found in North America, II and IV in Africa, III in Europe and Africa, V in Eurasia, VI is global but very rare, and VIII is found in Asia. The wMel Wolbachia genotype is predominant in D. melanogaster populations. However, according to the hypothesis of global Wolbachia replacement, the wMelCS genotype was predominant before the XX century when it was replaced by the wMel genotype. Here we analyse over 1500 fly isolates from the Palearctic region to evaluate the prevalence, genetic diversity and distribution pattrern of the Wolbachia symbiont, occurrence of mtDNA variants, and finally to discuss the Wolbachia genotype global replacement hypothesis. RESULTS: All studied Palearctic populations of D. melanogaster were infected with Wolbachia at a rate of 33-100%. We did not observe any significant correlation between infection rate and longitude or latitude. Five previously reported Wolbachia genotypes were found in Palearctic populations with a predominance of the wMel variant. The mtDNA haplotypes of the I_II_III clade and V clade were prevalent in Palearctic populations. To test the recent Wolbachia genotype replacement hypothesis, we examined three genomic regions of CS-like genotypes. Low genetic diversity was observed, only two haplotypes of the CS genotypes with a 'CCG' variant predominance were found. CONCLUSION: The results of our survey of Wolbachia infection prevalence and genotype diversity in Palearctic D. melanogaster populations confirm previous studies. Wolbachia is ubiquitous in the Palearctic region. The wMel genotype is dominant with local occurrence of rare genotypes. Together with variants of the V mtDNA clade, the variants of the 'III+' clade are dominant in both infected and uninfected flies of Palearctic populations. Based on our data on Wolbachia and mtDNA in different years in some Palearctic localities, we can conclude that flies that survive the winter make the predominant symbiont contribution to the subsequent generation. A comprehensive overview of mtDNA and Wolbachia infection of D. melanogaster populations worldwide does not support the recent global Wolbachia genotype replacement hypothesis. However, we cannot exclude wMelCS genotype rate fluctuations in the past.


Subject(s)
DNA, Mitochondrial/genetics , Drosophila melanogaster/microbiology , Genetic Variation , Symbiosis , Wolbachia/genetics , Wolbachia/physiology , Animals , Genomics , Geography , Haplotypes , Mitochondria/genetics , Prevalence , Wolbachia/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...