Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 26(8)2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33921656

ABSTRACT

The solution behavior and physicochemical characteristics of polymer-colloid complexes based on cationic imidazolium amphiphile with a dodecyl tail (IA-12) and polyacrylic acid (PAA) or DNA decamer (oligonucleotide) were evaluated using tensiometry, conductometry, dynamic and electrophoretic light scattering and fluorescent spectroscopy and microscopy. It has been established that PAA addition to the surfactant system resulted in a ca. 200-fold decrease in the aggregation threshold of IA-12, with the hydrodynamic diameter of complexes ranging within 100-150 nm. Electrostatic forces are assumed to be the main driving force in the formation of IA-12/PAA complexes. Factors influencing the efficacy of the complexation of IA-12 with oligonucleotide were determined. The nonconventional mode of binding with the involvement of hydrophobic interactions and the intercalation mechanism is probably responsible for the IA-12/oligonucleotide complexation, and a minor contribution of electrostatic forces occurred. The latter was supported by zeta potential measurements and the gel electrophoresis technique, which demonstrated the low degree of charge neutralization of the complexes. Importantly, cellular uptake of the IA-12/oligonucleotide complex was confirmed by fluorescence microscopy and flow cytometry data on the example of M-HeLa cells. While single IA-12 samples exhibit roughly similar cytotoxicity, IA-12-oligonucleotide complexes show a selective effect toward M-HeLa cells (IC50 1.1 µM) compared to Chang liver cells (IC50 23.1 µM).


Subject(s)
Acrylic Resins/chemistry , Cations/chemistry , Colloids/chemistry , DNA/chemistry , Polymers/chemistry , Cell Line, Tumor , Flow Cytometry , HeLa Cells , Humans , Hydrophobic and Hydrophilic Interactions , Imidazoles/chemistry , Microscopy, Fluorescence
2.
Vaccine ; 26(31): 3870-9, 2008 Jul 23.
Article in English | MEDLINE | ID: mdl-18555565

ABSTRACT

Foot-and-mouth disease (FMD) vaccine potency testing has historically been performed by experimentally infecting vaccinated cattle. A few alternative approaches to the in vivo challenge test based on the correlation between serum titres of primo-vaccinated cattle and protection against infection have been proposed, but none have been accepted by the European Pharmacopoeia (Ph.Eur.) due to the lack of statistical power and the pooling of data over time. The present study addresses these issues and presents data of 150 cattle vaccinated according to Ph.Eur. standards. Four laboratories took part in the serological testing and different serological assays were used, including virus neutralisation assays and ELISA formats. Models correlating specific anti-FMD virus antibody titres to protection were built using logistic regression followed by Receiver Operating Characteristic (ROC) analysis. The best models accurately predicted the in vivo protection status in 80.0% of the cases. Although differences were observed between laboratories and assays used, the majority of antibody pass-levels, determined using ROC analysis, corresponded to at least 75.0% probability of protection. The indirect potency assessment procedure proposed is at least as precise (repeatability=65.8%, reproducibility=60.7%) as the in vivo test, can be standardised and results in a quantitative PD50 value. The validity of the procedure was also demonstrated.


Subject(s)
Antibodies, Viral/blood , Foot-and-Mouth Disease/prevention & control , Viral Vaccines/immunology , Animals , Cattle , Enzyme-Linked Immunosorbent Assay , Logistic Models , Neutralization Tests , Predictive Value of Tests , ROC Curve , Reproducibility of Results , Statistics as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...