Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Genes (Basel) ; 15(5)2024 May 11.
Article in English | MEDLINE | ID: mdl-38790244

ABSTRACT

BACKGROUND: Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation is an inherited disease caused by pathogenic biallelic variants in the gene DARS2, which encodes mitochondrial aspartyl-tRNA synthetase. This disease is characterized by slowly progressive spastic gait, cerebellar symptoms, and leukoencephalopathy with brainstem and spinal cord involvement. CASE PRESENTATION: Peripheral blood samples were collected from four patients from four unrelated families to extract genomic DNA. All patients underwent partial exon analysis of the DARS2 gene using Sanger sequencing, which detected the c.228-21_228-20delinsC variant in a heterozygous state. Further DNA from three patients was analyzed using a next-generation sequencing-based custom AmpliSeq™ panel for 59 genes associated with leukodystrophies, and one of the patients underwent whole genome sequencing. We identified a novel pathogenic variant c.1675-1256_*115delinsGCAACATTTCGGCAACATTCCAACC in the DARS2 gene. Three patients (patients 1, 2, and 4) had slowly progressive cerebellar ataxia, and two patients (patients 1 and 2) had spasticity. In addition, two patients (patients 2 and 4) showed signs of axonal neuropathy, such as decreased tendon reflexes and loss of distal sensitivity. Three patients (patients 1, 2, and 3) also had learning difficulties. It should be noted the persistent presence of characteristic changes in brain MRI in all patients, which emphasizes its importance as the main diagnostic tool for suspicion and subsequent confirmation of LBSL. Conclusions: We found a novel indel variant in the DARS2 gene in four patients with LBSL and described their clinical and genetic characteristics. These results expand the mutational spectrum of LBSL and aim to improve the laboratory diagnosis of this form of leukodystrophy.


Subject(s)
Aspartate-tRNA Ligase , INDEL Mutation , Leukoencephalopathies , Humans , Aspartate-tRNA Ligase/genetics , Aspartate-tRNA Ligase/deficiency , Male , Leukoencephalopathies/genetics , Leukoencephalopathies/pathology , Female , Brain Stem/pathology , Brain Stem/diagnostic imaging , Child , Lactic Acid/blood , Russia , Adult , Spinal Cord/pathology , Spinal Cord/diagnostic imaging , Adolescent , Mitochondrial Diseases
2.
J Pers Med ; 13(10)2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37888103

ABSTRACT

Here, we report the pediatric cases of sitosterolemia, a rare autosomal-recessive genetic disorder, characterized by high concentrations of plant sterols in blood and heterogeneity manifestations. All three patients (two girls aged 2 and 6 years old, and one boy aged 14 years old) were initially diagnosed with hypercholesterinemia. Next-generation sequencing (NGS) revealed homozygous (p.Leu572Pro/p.Leu572Pro) and compound (p.Leu572Pro/p.Gly512Arg and p.Leu572Pro/p.Trp361*) variants in the ABCG8 gene that allowed for the diagnosis of sitosterolemia. Two patients whose blood phytosterol levels were estimated before the diet demonstrated high levels of sitosterol/campesterol (69.6/29.2 and 28.3/12.4 µmol/L, respectively). Here, we demonstrate that NGS-testing led to the proper diagnosis that is essential for patients' management. The variant p.Leu572Pro might be prevalent among patients with sitosterolemia in Russia.

3.
Int J Neonatal Screen ; 9(3)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37754774

ABSTRACT

Long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) and mitochondrial trifunctional protein (MTP) deficiencies are rare fatal disorders of fatty acid ß-oxidation with no apparent genotype-phenotype correlation. The measurement of acylcarnitines by MS/MS is a current diagnostic workup in these disorders. Nevertheless, false-positive and false-negative results have been reported, highlighting a necessity for more sensitive and specific biomarkers. This study included 54 patients with LCHAD/MTP deficiency that has been confirmed by biochemical and molecular methods. The analysis of acylcarnitines in dried blood spots was performed using ESI-MS/MS. The established "HADHA ratio" = (C16OH + C18OH + C18:1OH)/C0 was significantly elevated in all 54 affected individuals in comparison to the control group. Apart from 54 LCHAD deficiency patients, the "HADHA ratio" was calculated in 19 patients with very-long-chain acyl-CoA dehydrogenase (VLCAD) deficiency. As VLCAD-deficient patients did not show increased "HADHA ratio", the results emphasized the high specificity of this new ratio. Therefore, the "HADHA ratio" was shown to be instrumental in improving the overall performance of MS/MS-based analysis of acylcarnitine levels in the diagnostics of LCHAD/MTP deficiencies. The ratio was demonstrated to increase the sensitivity and specificity of this method and reduce the chances of false-negative results.

4.
Int J Mol Sci ; 24(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37240451

ABSTRACT

Mutations in the GBA1 gene, encoding the lysosomal enzyme glucocerebrosidase (GCase), cause Gaucher disease (GD) and are the most common genetic risk factor for Parkinson's disease (PD). Pharmacological chaperones (PCs) are being developed as an alternative treatment approach for GD and PD. To date, NCGC00241607 (NCGC607) is one of the most promising PCs. Using molecular docking and molecular dynamics simulation we identified and characterized six allosteric binding sites on the GCase surface suitable for PCs. Two sites were energetically more preferable for NCGC607 and located nearby to the active site of the enzyme. We evaluated the effects of NCGC607 treatment on GCase activity and protein levels, glycolipids concentration in cultured macrophages from GD (n = 9) and GBA-PD (n = 5) patients as well as in induced human pluripotent stem cells (iPSC)-derived dopaminergic (DA) neurons from GBA-PD patient. The results showed that NCGC607 treatment increased GCase activity (by 1.3-fold) and protein levels (by 1.5-fold), decreased glycolipids concentration (by 4.0-fold) in cultured macrophages derived from GD patients and also enhanced GCase activity (by 1.5-fold) in cultured macrophages derived from GBA-PD patients with N370S mutation (p < 0.05). In iPSC-derived DA neurons from GBA-PD patients with N370S mutation NCGC607 treatment increased GCase activity and protein levels by 1.1-fold and 1.7-fold (p < 0.05). Thus, our results showed that NCGC607 could bind to allosteric sites on the GCase surface and confirmed its efficacy on cultured macrophages from GD and GBA-PD patients as well as on iPSC-derived DA neurons from GBA-PD patients.


Subject(s)
Gaucher Disease , Parkinson Disease , Humans , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Molecular Docking Simulation , Gaucher Disease/drug therapy , Gaucher Disease/genetics , Cell Culture Techniques , Binding Sites , Glycolipids , Mutation
5.
Int J Mol Sci ; 24(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36901867

ABSTRACT

GBA variants increase the risk of Parkinson's disease (PD) by 10 times. The GBA gene encodes the lysosomal enzyme glucocerebrosidase (GCase). The p.N370S substitution causes a violation of the enzyme conformation, which affects its stability in the cell. We studied the biochemical characteristics of dopaminergic (DA) neurons generated from induced pluripotent stem cells (iPSCs) from a PD patient with the GBA p.N370S mutation (GBA-PD), an asymptomatic GBA p.N370S carrier (GBA-carrier), and two healthy donors (control). Using liquid chromatography with tandem mass spectrometry (LC-MS/MS), we measured the activity of six lysosomal enzymes (GCase, galactocerebrosidase (GALC), alpha-glucosidase (GAA), alpha-galactosidase (GLA), sphingomyelinase (ASM), and alpha-iduronidase (IDUA)) in iPSC-derived DA neurons from the GBA-PD and GBA-carrier. DA neurons from the GBA mutation carrier demonstrated decreased GCase activity compared to the control. The decrease was not associated with any changes in GBA expression levels in DA neurons. GCase activity was more markedly decreased in the DA neurons of GBA-PD patient compared to the GBA-carrier. The amount of GCase protein was decreased only in GBA-PD neurons. Additionally, alterations in the activity of the other lysosomal enzymes (GLA and IDUA) were found in GBA-PD neurons compared to GBA-carrier and control neurons. Further study of the molecular differences between the GBA-PD and the GBA-carrier is essential to investigate whether genetic factors or external conditions are the causes of the penetrance of the p.N370S GBA variant.


Subject(s)
Induced Pluripotent Stem Cells , Parkinson Disease , Humans , Parkinson Disease/metabolism , Glucosylceramidase/genetics , Dopaminergic Neurons/metabolism , Induced Pluripotent Stem Cells/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry
6.
Int J Mol Sci ; 23(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36361766

ABSTRACT

(1) Hypophosphatasia (HPP) is a rare inherited disease caused by mutations (pathogenic variants) in the ALPL gene which encodes tissue-nonspecific alkaline phosphatase (TNSALP). HPP is characterized by impaired bone mineral metabolism due to the low enzymatic activity of TNSALP. Knowledge about the structure of the gene and the features and functions of various ALPL gene variants, taking into account population specificity, gives an understanding of the hereditary nature of the disease, and contributes to the diagnosis, prevention, and treatment of the disease. The purpose of the study was to describe the spectrum and analyze the functional features of the ALPL gene variants, considering various HPP subtypes and clinical symptoms in Russian children. (2) From 2014−2021, the study included the blood samples obtained from 1612 patients with reduced alkaline phosphatase activity. The patients underwent an examination with an assessment of their clinical symptoms and biochemical levels of TNSALP. DNA was isolated from dried blood spots (DBSs) or blood from the patients to search for mutations in the exons of the ALPL gene using Sanger sequencing. The PCR products were sequenced using a reagent BigDye Terminator 3.1 kit (Applied Biosystems). Statistical analysis was performed using the GraphPad Prism 8.01 software. (3) The most common clinical symptoms in Russian patients with HPP and two of its variants (n = 22) were bone disorders (75%), hypomyotonia (50%), and respiratory failure (50%). The heterozygous carriage of the causal variants of the ALPL gene was detected in 225 patients. A total of 2 variants were found in 27 patients. In this group (n = 27), we identified 28 unique variants of the ALPL gene, of which 75.0% were missense, 17.9% were frameshift, 3.6% were splicing variants, and 3.6% were duplications. A total of 39.3% (11/28) of the variants were pathogenic, with two variants being probably pathogenic, and 15 variants had unknown clinical significance (VUS). Among the VUS group, 28.6% of the variants (7/28) were discovered by us for the first time. The most common variants were c.571G > A (p.Glu191Lys) and c.1171del (Arg391Valfs*12), with frequencies of 48.2% (13/28) and 11% (3/28), respectively. It was found that the frequency of nonsense variants of the ALPL gene was higher (p < 0.0001) in patients with the perinatal form compared to the infantile and childhood forms of HPP. Additionally, the number of homozygotes in patients with the perinatal form exceeded (p < 0.01) the frequencies of these genotypes in children with infantile and childhood forms of HPP. On the contrary, the frequencies of the compound-heterozygous and heterozygous genotypes were higher (p < 0.01) in patients with infantile childhood HPP than in perinatal HPP. In the perinatal form, residual TNSALP activity was lower (p < 0.0005) in comparison to the infantile and childhood (p < 0.05) forms of HPP. At the same time, patients with the heterozygous and compound-heterozygous genotypes (mainly missense variants) of the ALPL gene had greater residual activity (of the TNSALP protein) regarding those homozygous patients who were carriers of the nonsense variants (deletions and duplications) of the ALPL gene. Residual TNSALP activity was lower (p < 0.0001) in patients with pathogenic variants encoding the amino acids from the active site and the calcium and crown domains in comparison with the nonspecific region of the protein.


Subject(s)
Hypophosphatasia , Humans , Child , Hypophosphatasia/genetics , Alkaline Phosphatase , Mutation , Heterozygote
7.
Int J Mol Sci ; 23(19)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36232726

ABSTRACT

Eleven patients from Yakutia with a new lysosomal disease assumed then as mucopolysaccharidosis-plus syndrome (MPS-PS) were reported by Gurinova et al. in 2014. Up to now, a total number of 39 patients have been reported; in all of them, the c.1492C>T (p.Arg498Trp) variant of the VPS33A gene was detected. Here, we describe the first Polish MPS-PS patient with a novel homozygous c.599G>C (p.Arg200Pro) VPS33A variant presenting over 12 years of follow-up with some novel clinical features, including fetal ascites (resolved spontaneously), recurrent joint effusion and peripheral edemas, normal growth, and visceral obesity. Functional analyses revealed a slight presence of chondroitin sulphate (only) in urine glycosaminoglycan electrophoresis, presence of sialooligosaccharides in urine by thin-layer chromatography, and normal results of lysosomal enzymes activity and lysosphingolipids concentration in dried blood spot. The comparison with other MPS-PS described cases was also provided. The presented description of the natural history of MPS-PS in our patient may broaden the spectrum of phenotypes in this disease.


Subject(s)
Mucopolysaccharidoses , Vesicular Transport Proteins , Chondroitin Sulfates/urine , Glycosaminoglycans/urine , Humans , Mucopolysaccharidoses/blood , Mucopolysaccharidoses/diagnosis , Mucopolysaccharidoses/genetics , Mucopolysaccharidoses/urine , Mutation , Poland , Sphingolipids/blood , Vesicular Transport Proteins/genetics
9.
Genes (Basel) ; 13(6)2022 06 14.
Article in English | MEDLINE | ID: mdl-35741823

ABSTRACT

Background: Hypertriglyceridemia (HTG) is one of the most common forms of lipid metabolism disorders. The leading clinical manifestations are pancreatitis, atherosclerotic vascular lesions, and the formation of eruptive xanthomas. The most severe type of HTG is primary (or hereditary) hypertriglyceridemia, linked to pathogenic genetic variants in LPL, APOC2, LMF1, and APOA5 genes. Case: We present a clinical case of severe primary hypertriglyceridemia (TG level > 55 mmol/L in a 4-year-old boy) in a consanguineous family. The disease developed due to a previously undescribed homozygous deletion in the APOA5 gene (NM_052968: c.579_592delATACGCCGAGAGCC p.Tyr194Gly*68). We also evaluate the clinical significance of a genetic variant in the LPL gene (NM_000237.2: c.106G>A (rs1801177) p.Asp36Asn), which was previously described as a polymorphism. In one family, we also present a different clinical significance even in heterozygous carriers: from hypertriglyceridemia to normotriglyceridemia. We provide evidence that this heterogeneity has developed due to polymorphism in the LPL gene, which plays the role of an additional trigger. Conclusions: The homozygous deletion of the APOA5 gene is responsible for the severe hypertriglyceridemia, and another SNP in the LPL gene worsens the course of the disease.


Subject(s)
Hypertriglyceridemia , Pancreatitis , Apolipoprotein A-V/genetics , Child, Preschool , Heterozygote , Homozygote , Humans , Hypertriglyceridemia/genetics , Hypertriglyceridemia/pathology , Male , Pancreatitis/genetics , Sequence Deletion
10.
Cardiol Res ; 13(6): 398-404, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36660067

ABSTRACT

Inherited cardiomyopathies (CMPs) are fairly common causes of morbidity and mortality, particularly, in young individuals. In substantial number of cases, only morphological diagnostic criteria cannot distinguish one CMP from another because of incomplete penetrance, advanced stage of the disease, or overlapping phenotypes. Genetic testing has become a mandatory tool for definite diagnosis that is required for family screening, individual prognosis, and personalized treatment strategy in routine practice. In parallel, accumulation of genotype-phenotype correlations, especially for rare genes, promotes the deciphering of underling molecular mechanisms and the development of targeting treatment of CMPs. Here we present an adult-onset case comprised morphological features of several CMPs: asymmetric left ventricle (LV) hypertrophy, severe systolic dysfunction, LV hypertrabeculation and restrictive physiology. Using next-generation sequencing, two novel variants (NM_020778.5:c.1958C>G:p.Ser653* and c.3491G>A:p.Arg1164Gln) in alpha-protein kinase 3 (ALPK3) gene were identified and confirmed with Sanger sequencing. The trans-position (location on different alleles) of identified ALPK3 variants was established by plasmid cloning method. The ALPK3 gene, encoding nuclear alpha-protein kinase 3, has only recently been associated with CMPs and there are still few clinical data on ALPK3 variant carriers. To date, only five affected individuals with adult-onset CMPs in the setting of biallelic variants of ALPK3 gene have been reported.

11.
PLoS One ; 16(4): e0249608, 2021.
Article in English | MEDLINE | ID: mdl-33822819

ABSTRACT

A timely detection of patients with tetrahydrobiopterin (BH4) -deficient types of hyperphenylalaninemia (HPABH4) is important for assignment of correct therapy, allowing to avoid complications. Often HPABH4 patients receive the same therapy as phenylalanine hydroxylase (PAH) -deficiency (phenylketonuria) patients-dietary treatment-and do not receive substitutive BH4 therapy until the diagnosis is confirmed by molecular genetic means. In this study, we present a cohort of 30 Russian patients with HPABH4 with detected variants in genes causing different types of HPA. Family diagnostics and biochemical urinary pterin spectrum analyses were carried out. HPABH4A is shown to be the prevalent type, 83.3% of all HPABH4 cases. The mutation spectrum for the PTS gene was defined, the most common variants in Russia were p.Thr106Met-32%, p.Asn72Lys-20%, p.Arg9His-8%, p.Ser32Gly-6%. We also detected 7 novel PTS variants and 3 novel QDPR variants. HPABH4 prevalence was estimated to be 0.5-0.9% of all HPA cases in Russia, which is significantly lower than in European countries on average, China, and Saudi Arabia. The results of this research show the necessity of introducing differential diagnostics for HPABH4 into neonatal screening practice.


Subject(s)
Mutation , Phenylalanine Hydroxylase/deficiency , Phenylketonurias/epidemiology , Phosphorus-Oxygen Lyases/deficiency , Case-Control Studies , Humans , Phenylketonurias/genetics , Phenylketonurias/pathology , Phosphorus-Oxygen Lyases/genetics , Prognosis , Retrospective Studies , Russia/epidemiology
12.
J Clin Invest ; 131(6)2021 03 15.
Article in English | MEDLINE | ID: mdl-33465056

ABSTRACT

Leber's hereditary optic neuropathy (LHON) is the most frequent mitochondrial disease and was the first to be genetically defined by a point mutation in mitochondrial DNA (mtDNA). A molecular diagnosis is achieved in up to 95% of cases, the vast majority of which are accounted for by 3 mutations within mitochondrial complex I subunit-encoding genes in the mtDNA (mtLHON). Here, we resolve the enigma of LHON in the absence of pathogenic mtDNA mutations. We describe biallelic mutations in a nuclear encoded gene, DNAJC30, in 33 unsolved patients from 29 families and establish an autosomal recessive mode of inheritance for LHON (arLHON), which to date has been a prime example of a maternally inherited disorder. Remarkably, all hallmarks of mtLHON were recapitulated, including incomplete penetrance, male predominance, and significant idebenone responsivity. Moreover, by tracking protein turnover in patient-derived cell lines and a DNAJC30-knockout cellular model, we measured reduced turnover of specific complex I N-module subunits and a resultant impairment of complex I function. These results demonstrate that DNAJC30 is a chaperone protein needed for the efficient exchange of complex I subunits exposed to reactive oxygen species and integral to a mitochondrial complex I repair mechanism, thereby providing the first example to our knowledge of a disease resulting from impaired exchange of assembled respiratory chain subunits.


Subject(s)
Electron Transport Complex I/metabolism , HSP40 Heat-Shock Proteins/genetics , Mutation , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/metabolism , Adolescent , Adult , Cell Line , Child, Preschool , Electron Transport Complex I/chemistry , Female , Gene Knockout Techniques , Genes, Recessive , HSP40 Heat-Shock Proteins/deficiency , HSP40 Heat-Shock Proteins/metabolism , Homozygote , Humans , Male , Middle Aged , Pedigree , Penetrance , Phenotype , Protein Subunits , Reactive Oxygen Species/metabolism , Young Adult
13.
Biomed Rep ; 14(1): 15, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33269076

ABSTRACT

Familial hypercholesterolemia (FH) is caused by mutations in various genes, including the LDLR, APOB and PSCK9 genes; however, the spectrum of these mutations in Russian individuals has not been fully investigated. In the present study, mutation screening was performed on the LDLR gene and other FH-associated genes in patients with definite or possible FH, using next-generation sequencing. In total, 59 unrelated patients were recruited and sorted into two separate groups depending on their age: Adult (n=31; median age, 49; age range, 23-70) and children/adolescent (n=28; median age, 11; age range, 2-21). FH-associated variants were identified in 18 adults and 25 children, demonstrating mutation detection rates of 58 and 89% for the adult and children/adolescent groups, respectively. In the adult group, 13 patients had FH-associated mutations in the LDLR gene, including two novel variants [NM_000527.4: c.433_434dupG p.(Val145Glyfs*35) and c.1186G>C p.(Gly396Arg)], 3 patients had APOB mutations and two had ABCG5/G8 mutations. In the children/adolescent group, 21 patients had FH-causing mutations in the LDLR gene, including five novel variants [NM_000527.4: c.325T>G p.(Cys109Gly), c.401G>C p.(Cys134Ser), c.616A>C p.(Ser206Arg), c.1684_1691delTGGCCCAA p.(Pro563Hisfs*14) and c.940+1_c.940+4delGTGA], and 2 patients had APOB mutations, as well as ABCG8 and LIPA mutations, being found in different patients. The present study reported seven novel LDLR variants considered to be pathogenic or likely pathogenic. Among them, four missense variants were located in the coding regions, which corresponded to functional protein domains, and two frameshifts were identified that produced truncated proteins. These variants were observed only once in different patients, whereas a splicing variant in intron 6 (c.940+1_c.940+4delGTGA) was detected in four unrelated individuals. Previously reported variants in the LDLR, APOB, ABCG5/8 and LIPA genes were observed in 33 patients. The LDLR p.(Gly592Glu) variant was detected in 6 patients, representing 10% of the FH cases reported in the present study, thus it may be a major variant present in the Russian population. In conclusion, the present study identified seven novel variants of the LDLR gene and broadens the spectrum of mutations in FH-related genes in the Russian Federation.

14.
JIMD Rep ; 53(1): 39-44, 2020 May.
Article in English | MEDLINE | ID: mdl-32395408

ABSTRACT

Glycogen storage disease type 0 (GSD 0) is an autosomal recessive disorder of glycogen metabolism caused by mutations in the GYS2 gene manifesting in infancy or early childhood and characterized by ketotic hypoglycemia after prolonged fasting, and postprandial hyperglycemia and hyperlactatemia. GSD 0 is a rare form of hepatic glycogen storage disease with less than 30 reported patients in the literature so far.DNA samples of 93 Russian patients with clinical diagnoses of hepatic GSDs were collected and analyzed by next-generation sequencing custom target panel and by direct sequencing. Seven new GSD 0 patients with variable phenotypes were found showing 10 variants. Seven variants are novel.We present seven new GSD 0 patients with variable phenotypes. Overall, 10 different mutant alleles of the GYS2 gene were found. Seven of them are novel: c.214delC, c.845delT, c.1644C>A, c.205T>A, c.929G>T, c.1169G>C and c.1703C>A. Three of the novel variants were annotated as pathogenic and likely pathogenic; four other variants have an uncertain significance.The current results expand the spectrum of known mutations in GYS2 and suggest that phenotypes of GSD 0 are more variable and less specific than the reported ones. SYNOPSIS: Seven new patients with glycogen storage disease type 0 were found using next-generation sequencing and seven novel variants of GYS2 gene were annotated.

15.
Metab Brain Dis ; 35(6): 1009-1016, 2020 08.
Article in English | MEDLINE | ID: mdl-32240488

ABSTRACT

Glutaric aciduria type 1 (GA1, deficiency of glutaryl CoA dehydrogenase, glutaric acidemia type 1) (ICD-10 code: E72.3; MIM 231670) is an autosomal recessive disease caused by mutations in the gene encoding the enzyme glutaryl CoA dehydrogenase (GCDH). Herein, we present the biochemical and molecular genetic characteristics of 51 patients diagnosed with GA1 from 49 unrelated families in Russia. We identified a total of 21 variants, 9 of which were novel: c.127 + 1G > T, с.471_473delCGA, c.161 T > C (p.Leu54Pro), c.531C > A (р.Phe177Leu), c.647C > T (p.Ser216Leu), c.705G > A (р.Gly235Asp), c.898 G > A (р.Gly300Ser), c.1205G > C (р.Arg402Pro), c.1178G > A (р.Gly393Glu). The most commonly detected missense variants were c.1204C > T (p.Arg402Trp) and с.1262C > T (р.Ala421Val), which were identified in 56.38% and 11.7% of mutated alleles. A heterozygous microdeletion of the short arm (p) of chromosome 19 from position 12,994,984-13,003,217 (8233 b.p.) and from position 12,991,506-13,003,217 (11,711 b.p.) were detected in two patients. Genes located in the area of imbalance were KLF1, DNASE2, and GCDH. Patients presented typical GA1 biochemical changes in the biological fluids, except one patient with the homozygous mutation p.Val400Met. No correlation was found between the GCDH genotype and glutaric acid (GA) concentration in the cohort of our patients.


Subject(s)
Amino Acid Metabolism, Inborn Errors/epidemiology , Amino Acid Metabolism, Inborn Errors/genetics , Brain Diseases, Metabolic/epidemiology , Brain Diseases, Metabolic/genetics , Glutaryl-CoA Dehydrogenase/chemistry , Glutaryl-CoA Dehydrogenase/deficiency , Glutaryl-CoA Dehydrogenase/genetics , Mutation, Missense/genetics , Amino Acid Metabolism, Inborn Errors/diagnosis , Brain Diseases, Metabolic/diagnosis , Child, Preschool , Female , Humans , Infant , Male , Protein Structure, Secondary , Russia/epidemiology
16.
J Inherit Metab Dis ; 42(5): 918-933, 2019 09.
Article in English | MEDLINE | ID: mdl-31260105

ABSTRACT

Recently, the plasma cytokines FGF-21 and GDF-15 were described as cellular metabolic regulators. They share an endocrine function and are highly expressed in the liver under stress and during starvation. Several studies found that these markers have high sensitivity and specificity for the diagnosis of mitochondrial diseases, especially those with prominent muscular involvement. In our study, we aimed to determine whether these markers could help distinguish mitochondrial diseases from other groups of inherited diseases. We measured plasma FGF-21 and GDF-15 concentrations in 122 patients with genetically confirmed primary mitochondrial disease and 127 patients with non-mitochondrial inherited diseases. Although GDF-15 showed better analytical characteristics (sensitivity = 0.66, specificity = 0.64, area under the curve [AUC] = 0.88) compared to FGF-21 (sensitivity = 0.51, specificity = 0.76, AUC = 0.78) in the pediatric group of mitochondrial diseases, both markers were also elevated in a variety of non-mitochondrial diseases, especially those with liver involvement (Gaucher disease, galactosemia, glycogenosis types 1a, 1b, 9), organic acidurias and some leukodystrophies. Thus, the overall positive and negative predictive values were not acceptable for these measurements to be used as diagnostic tests for mitochondrial diseases (FGF-21 positive predictive value [PPV] = 34%, negative predictive value [NPV] = 73%; GDF-15 PPV = 47%, NPV = 28%). We suggest that FGF-21 and GDF-15 increase in patients with metabolic diseases with metabolic or oxidative stress and inflammation.


Subject(s)
Fibroblast Growth Factors/blood , Growth Differentiation Factor 15/blood , Metabolic Diseases/blood , Metabolic Diseases/diagnosis , Adolescent , Adult , Biomarkers/blood , Case-Control Studies , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Mitochondrial Diseases/blood , Mitochondrial Diseases/diagnosis , Predictive Value of Tests , Young Adult
17.
BMC Med Genet ; 20(1): 123, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31296176

ABSTRACT

BACKGROUND: Niemann-Pick disease type C (NP-C) is an inherited neurodegenerative disease (1 per 100 000 newborns) caused by NPC proteins impairment that leads to unesterified cholesterol accumulation in late endosomal/lysosomal compartments. To date the NP-C diagnostics is usually based on cholesterol detection in fibroblasts using an invasive and time-consuming Filipin staining and we need more arguments to widely introduce oxysterols as a biomarkers in NP-C. METHODS: Insofar as NP-C represents about 8% of all infant cholestases, in this prospective observational study we tried to re-assess the specificity plasma oxysterol and chitotriosidase as a biochemical screening markers of NP-C in children with cholestasis syndrome of unknown origin. For 108 patients (aged from 2 weeks to 7 years) the levels of cholestane-3ß,5α,6ß-triol (C-triol) and chitotriosidase (ChT) were measured. For patients with elevated C-triol and/or ChT the NPC1 and NPC2 genes were Sanger-sequenced and 47 additional genes (from the custom liver damage panel) were NGS-sequenced. RESULTS: Increased C-triol level (> 50 ng/ml) was detected in 4 (of 108) infants with cholestasis syndrome of unknown origin, with following molecular genetic NP-C diagnosis for one patient. Plasma cholesterol significantly correlates with C-triol (p < 0.05). NGS of high C-triol infants identified three patients with mutations in JAG1 (Alagille syndrome) and ABCB11 (Byler disease) genes. Increased ChT activity was detected in 8 (of 108) patients with various aetiologies, including NP-C, Byler disease and biliary atresia. CONCLUSION: Combined analysis of ChT activity and C-triol levels is an effective method for identifying NP-C.


Subject(s)
Cholestasis/complications , Hexosaminidases/blood , Niemann-Pick Disease, Type C/diagnosis , Niemann-Pick Disease, Type C/genetics , Oxysterols/blood , ATP Binding Cassette Transporter, Subfamily B, Member 11/genetics , Alagille Syndrome/genetics , Amino Acyl-tRNA Synthetases/genetics , Biliary Atresia/genetics , Biomarkers/blood , Carrier Proteins/genetics , Child , Child, Preschool , Cholestasis, Intrahepatic/genetics , Female , Genetic Association Studies , Genetic Predisposition to Disease , Glycoproteins/genetics , Hexosaminidases/metabolism , Humans , Infant , Infant, Newborn , Intracellular Signaling Peptides and Proteins , Jagged-1 Protein/genetics , Liver , Male , Membrane Glycoproteins/genetics , Mutation , Neurodegenerative Diseases , Niemann-Pick C1 Protein , Oxysterols/metabolism , Prospective Studies , Sensitivity and Specificity , Vesicular Transport Proteins
18.
Orphanet J Rare Dis ; 14(1): 55, 2019 02 22.
Article in English | MEDLINE | ID: mdl-30795770

ABSTRACT

BACKGROUND: Acid sphingomyelinase deficiency (ASMD), due to mutations in the sphingomyelin phosphodiesterase 1 (SMPD1) gene, is divided into infantile neurovisceral ASMD (Niemann-Pick type A), chronic neurovisceral ASMD (intermediate form, Niemann-Pick type A/B) and chronic visceral ASMD (Niemann-Pick type B). We conducted a long-term observational, single-center study including 16 patients with chronic visceral ASMD. RESULTS: 12 patients were diagnosed in childhood and 4 others in adulthood, the oldest at the age of 50. The mean time of follow-up was approximately 10 years (range: 6 months - 36 years). Splenomegaly was noted in all patients at diagnosis. Hepatomegaly was observed in 88% of patients. Moderately elevated (several-fold above the upper limit of normal values) serum transaminases were noted in 38% of patients. Cherry-red spots were found in five Gypsy children from one family and also in one adult Polish patient, a heterozygote for p.delR610 mutation. Dyslipidemia was noted in 50% of patients. Interstitial lung disease was diagnosed in 44% of patients. Plasmatic lysosphingomyelin (SPC) was elevated in all the patients except one with p.V36A homozygosity and a very mild phenotype also presenting with elevated plasmatic SPC-509 but normal chitotriosidase activity. The most common variant of SMPD1 gene was p.G166R. We found a previously unreported variant in exon 2 (c.491G > T, p.G164 V) in one patient. CONCLUSIONS: Chronic visceral ASMD could constitute a slowly progressing disease with a relatively good outcome. The combined measurement of lysosphingomyelin (SPC) and lysospingomyelin-509 (SPC-509) is an essential method for the assessment of ASMD course.


Subject(s)
Niemann-Pick Disease, Type A/metabolism , Sphingomyelin Phosphodiesterase/metabolism , Adolescent , Adult , Child , Child, Preschool , Exons/genetics , Female , Follow-Up Studies , Hexosaminidases/genetics , Hexosaminidases/metabolism , Homozygote , Humans , Infant , Male , Mutation/genetics , Niemann-Pick Disease, Type A/genetics , Poland , Sphingomyelin Phosphodiesterase/genetics , Young Adult
19.
J Pediatr Gastroenterol Nutr ; 67(4): 452-457, 2018 10.
Article in English | MEDLINE | ID: mdl-29958253

ABSTRACT

BACKGROUND: Lysosomal acid lipase deficiency (LAL-D) is a rare autosomal recessive lysosomal lipid storage disorder that results in an early-onset, severe, and lethal phenotype, known as Wolman disease, or a late-onset, attenuated phenotype, cholesteryl ester storage disease (CESD). The aim of our study was to describe the clinical presentation of CESD, focusing on the first noted abnormalities in patients. A diagnostic algorithm of CESD was also proposed. METHODS: This is an observational, 1-center study of 19 Polish patients with late-onset LAL-D. RESULTS: The mean age at which the first symptoms were reported was 4 years and 6 months. A mild hepatomegaly was the most common initial abnormality observed in all (100%) patients. Seven (37%) patients were noted to have mildly to moderately elevated serum transaminases. At the time of first hospitalization all (100%) patients presented with hepatomegaly, 15 (79%) patients presented with elevated serum transaminases and all (100%) patients had dyslipidemia. The mean age at the time of CESD diagnosis was 7 years and 2 months. Diagnoses were based on a deficient LAL activity in leukocytes (in all patients) and the LIPA gene mutations (in 47% of them). All the patients were carriers for the mutation c.894G>A in the LIPA gene. There was approximately a 3-year delay from initial symptoms to final diagnosis. CONCLUSIONS: Hepatomegaly constitutes the most common presenting clinical sign of CESD. Hepatomegaly and dyslipidemia defined as elevated serum total and LDL cholesterol, elevated triglycerides and normal to low HDL cholesterol, comprises the most characteristic findings at CESD diagnosis.


Subject(s)
Algorithms , Cholesterol Ester Storage Disease/diagnosis , Dyslipidemias/diagnosis , Hepatomegaly/diagnosis , Sterol Esterase/analysis , Child , Child, Preschool , Cholesterol Ester Storage Disease/genetics , Dyslipidemias/blood , Dyslipidemias/genetics , Female , Hepatomegaly/blood , Hepatomegaly/genetics , Humans , Male , Mutation , Poland , Sterol Esterase/genetics , Transaminases/blood
20.
J Clin Endocrinol Metab ; 102(9): 3546-3556, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28911151

ABSTRACT

Context: Autoimmune polyendocrine syndrome type 1 (APS-1) is a rare monogenic autoimmune disease caused by mutations in the autoimmune regulator (AIRE) gene and characterized by chronic mucocutaneous candidiasis, hypoparathyroidism, and primary adrenal insufficiency. Comprehensive characterizations of large patient cohorts are rare. Objective: To perform an extensive clinical, immunological, and genetic characterization of a large nationwide Russian APS-1 cohort. Subjects and Methods: Clinical components were mapped by systematic investigations, sera were screened for autoantibodies associated with APS-1, and AIRE mutations were characterized by Sanger sequencing. Results: We identified 112 patients with APS-1, which is, to the best of our knowledge, the largest cohort described to date. Careful phenotyping revealed several additional and uncommon phenotypes such as cerebellar ataxia with pseudotumor, ptosis, and retinitis pigmentosa. Neutralizing autoantibodies to interferon-ω were found in all patients except for one. The major Finnish mutation c.769C>T (p.R257*) was the most frequent and was present in 72% of the alleles. Altogether, 19 different mutations were found, of which 9 were unknown: c.38T>C (p.L13P), c.173C>T (p.A58V), c.280C>T (p.Q94*), c.554C>G (p.S185*), c.661A>T (p.K221*), c.821del (p.Gly274Afs*104), c.1195G>C (p.A399P), c.1302C>A (p.C434*), and c.1497del (p.A500Pfs*21). Conclusions: The spectrum of phenotypes and AIRE mutation in APS-1 has been expanded. The Finnish major mutation is the most common mutation in Russia and is almost as common as in Finland. Assay of interferon antibodies is a robust screening tool for APS-1.


Subject(s)
Genetic Predisposition to Disease/epidemiology , Mutation , Polyendocrinopathies, Autoimmune/epidemiology , Polyendocrinopathies, Autoimmune/genetics , Transcription Factors/genetics , Adolescent , Adult , Age of Onset , Child , Child, Preschool , Cohort Studies , Female , Genotype , Humans , Male , Pedigree , Phenotype , Polyendocrinopathies, Autoimmune/diagnosis , Prevalence , Rare Diseases , Risk Assessment , Russia/epidemiology , Survival Analysis , Young Adult , AIRE Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...