Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 353(2): 261-8, 2015 May.
Article in English | MEDLINE | ID: mdl-25711338

ABSTRACT

Monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH) inhibitors exert preclinical effects indicative of therapeutic potential (i.e., analgesia). However, the extent to which MAGL and FAAH inhibitors produce unwanted effects remains unclear. Here, FAAH and MAGL inhibition was examined separately and together in a Δ(9)-tetrahydrocannabinol (Δ(9)-THC; 5.6 mg/kg i.p.) discrimination assay predictive of subjective effects associated with cannabis use, and the relative contribution of N-arachidonoyl ethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) in the prefrontal cortex, hippocampus, and caudate putamen to those effects was examined. Δ(9)-THC dose-dependently increased Δ(9)-THC appropriate responses (ED50 value = 2.8 mg/kg), whereas the FAAH inhibitors PF-3845 [N-3-pyridinyl-4-[[3-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenyl]methyl]-1-piperidinecarboxamide] and URB597 [(3'-​(aminocarbonyl)[1,​1'-​biphenyl]-​3-​yl)-​cyclohexylcarbamate] or a MAGL inhibitor JZL184 [4-​nitrophenyl-​4-​(dibenzo[d][1,​3]dioxol-​5-​yl(hydroxy)methyl)piperidine-​1-​carboxylate] alone did not substitute for the Δ(9)-THC discriminative stimulus. The nonselective FAAH/MAGL inhibitors SA-57 [4-[2-(4-chlorophenyl)ethyl]-1-piperidinecarboxylic acid 2-(methylamino)-2-oxoethyl ester] and JZL195 [4-​nitrophenyl 4-​(3-​phenoxybenzyl)piperazine-​1-​carboxylate] fully substituted for Δ(9)-THC with ED50 values equal to 2.4 and 17 mg/kg, respectively. Full substitution for Δ(9)-THC was also produced by a combination of JZL184 and PF-3845, but not by a combination of JZL184 and URB597 (i.e., 52% maximum). Cannabinoid receptor type 1 antagonist rimonabant attenuated the discriminative stimulus effects of Δ(9)-THC, SA-57, JZL195, and the combined effects of JZL184 and PF-3845. Full substitution for the Δ(9)-THC discriminative stimulus occurred only when both 2-AG and AEA were significantly elevated, and the patterns of increased endocannabinoid content were similar among brain regions. Overall, these results suggest that increasing both endogenous 2-AG and AEA produces qualitatively unique effects (i.e., the subjective effects of cannabis) that are not obtained from increasing either 2-AG or AEA separately.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Dronabinol/pharmacology , Enzyme Inhibitors/pharmacology , Monoacylglycerol Lipases/antagonists & inhibitors , Animals , Brain/drug effects , Brain/metabolism , Endocannabinoids/metabolism , Male , Mice
2.
Drug Alcohol Depend ; 139: 1-8, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24703610

ABSTRACT

BACKGROUND: Recent changes in the legality of cannabis have prompted evaluation of whether blood levels of Δ(9)-tetrahydrocannabinol (THC) or its metabolites could be used to substantiate impairment, particularly related to behavioral tasks such as driving. However, because marked tolerance develops to behavioral effects of THC, the applicability of a particular threshold of blood THC as an index of impairment in people with different patterns of use remains unclear. Studies relevant to this issue are difficult to accomplish in humans, as prior drug exposure is difficult to control. METHODS: Here, effects of THC to decrease rectal temperature and operant response rate compared to levels of THC and its metabolites were studied in blood in two groups of monkeys: one received intermittent treatment with THC (0.1 mg/kg i.v. every 3-4 days) and another received chronic THC (1 mg/kg/12 h s.c.) for several years. RESULTS: In monkeys with intermittent THC exposure, a single dose of THC (3.2 mg/kg s.c.) decreased rectal temperature and response rate. The same dose did not affect response rate or rectal temperature in chronically exposed monkeys, indicative of greater tolerance. In both groups, blood levels of THC peaked 20-60 min post-injection and had a similar half-life of elimination, indicating no tolerance to the pharmacokinetics of THC. Notably, in both groups, the behavioral effects of THC were not apparent when blood levels were maximal (20-min post-administration). CONCLUSION: These data indicate that thresholds for blood levels of THC do not provide a consistent index of behavioral impairment across individuals with different patterns of THC exposure.


Subject(s)
Dronabinol/blood , Animals , Body Temperature/drug effects , Conditioning, Operant/drug effects , Dronabinol/administration & dosage , Dronabinol/pharmacokinetics , Dronabinol/pharmacology , Drug Administration Schedule , Female , Half-Life , Macaca mulatta/blood , Male , Psychomotor Performance/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...