Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Schizophr Res ; 266: 66-74, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38377869

ABSTRACT

Schizophrenia is one of the most debilitating mental disorders, and its diagnosis and treatment present significant challenges. Several clinical trials have previously evaluated the effectiveness of simvastatin, a lipid-lowering medication, as a novel add-on treatment for schizophrenia. However, treatment effects varied highly between patients and over time. In the present study, we aimed to identify biomarkers of response to simvastatin in recent-onset schizophrenia patients. To this end, we profiled relevant immune and metabolic markers in patient blood samples collected in a previous clinical trial (ClinicalTrials.gov: NCT01999309) before simvastatin add-on treatment was initiated. Analysed sample types included serum, plasma, resting-state peripheral blood mononuclear cells (PBMCs), as well as PBMC samples treated ex vivo with immune stimulants and simvastatin. Associations between the blood readouts and clinical endpoints were evaluated using multivariable linear regression. This revealed that changes in insulin receptor (IR) levels induced in B-cells by ex vivo simvastatin treatment inversely correlated with in vivo effects on cognition at the primary endpoint of 12 months, as measured using the Brief Assessment of Cognition in Schizophrenia scale total score (standardised ß ± SE = -0.75 ± 0.16, P = 2.2 × 10-4, Q = 0.029; n = 21 patients). This correlation was not observed in the placebo group (ß ± SE = 0.62 ± 0.39, P = 0.17, Q = 0.49; n = 14 patients). The candidate biomarker explained 53.4 % of the variation in cognitive outcomes after simvastatin supplementation. Despite the small sample size, these findings suggest a possible interaction between the insulin signalling pathway and cognitive effects during simvastatin therapy. They also point to opportunities for personalized schizophrenia treatment through patient stratification.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Schizophrenia , Humans , Simvastatin/therapeutic use , Simvastatin/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Leukocytes, Mononuclear , Schizophrenia/drug therapy , Schizophrenia/chemically induced , Biomarkers , Dietary Supplements , Double-Blind Method
2.
Transl Psychiatry ; 12(1): 457, 2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36310155

ABSTRACT

A significant proportion of the personal and economic burden of schizophrenia can be attributed to the late diagnosis or misdiagnosis of the disorder. A novel, objective diagnostic approaches could facilitate the early detection and treatment of schizophrenia and improve patient outcomes. In the present study, we aimed to identify robust schizophrenia-specific blood biomarkers, with the goal of developing an accurate diagnostic model. The levels of selected serum and peripheral blood mononuclear cell (PBMC) markers relevant to metabolic and immune function were measured in healthy controls (n = 26) and recent-onset schizophrenia patients (n = 36) using multiplexed immunoassays and flow cytometry. Analysis of covariance revealed significant upregulation of insulin receptor (IR) and fatty acid translocase (CD36) levels in T helper cells (F = 10.75, P = 0.002, Q = 0.024 and F = 21.58, P = 2.8 × 10-5, Q = 0.0004, respectively), as well as downregulation of glucose transporter 1 (GLUT1) expression in monocytes (F = 21.46, P = 2.9 × 10-5, Q = 0.0004). The most robust predictors, monocyte GLUT1 and T helper cell CD36, were used to develop a diagnostic model, which showed a leave-one-out cross-validated area under the receiver operating characteristic curve (AUC) of 0.78 (95% CI: 0.66-0.92). The diagnostic model was validated in two independent datasets. The model was able to distinguish first-onset, drug-naïve schizophrenia patients (n = 34) from healthy controls (n = 39) with an AUC of 0.75 (95% CI: 0.64-0.86), and also differentiated schizophrenia patients (n = 22) from patients with other neuropsychiatric conditions, including bipolar disorder, major depressive disorder and autism spectrum disorder (n = 68), with an AUC of 0.83 (95% CI: 0.75-0.92). These findings indicate that PBMC-derived biomarkers have the potential to support an accurate and objective differential diagnosis of schizophrenia.


Subject(s)
Autism Spectrum Disorder , Depressive Disorder, Major , Schizophrenia , Humans , Schizophrenia/metabolism , Leukocytes, Mononuclear/metabolism , Depressive Disorder, Major/metabolism , Autism Spectrum Disorder/metabolism , Glucose Transporter Type 1/metabolism , Biomarkers
SELECTION OF CITATIONS
SEARCH DETAIL
...