Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
Sci Rep ; 14(1): 12711, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830908

ABSTRACT

The current research focuses on the development of Ag-ZnO heterostructures through a "bottom-up" approach involving the assembly and extraction of Aloe barbadensis Miller gel. These heterostructures composed of metals/semiconductor oxide display distinct and notable optical, electrical, magnetic, and chemical properties that are not found in single constituents and also exhibit photocatalytic applications. These synthesized heterostructures were characterized by XRD, FTIR, SEM, and UV-visible spectroscopy. The high peak intensity of the Ag/ZnO composite shows the high crystallinity. The presence of Ag-O, Zn-O, and O-H bonding is verified using FTIR analysis. SEM analysis indicated the formation of spherical shapes of Ag/ZnO heterostructures. The Zn, O, and Ag elements are further confirmed by EDX analysis. Ag-ZnO heterostructures exhibited excellent photocatalytic activity and stability against the degradation of tubantin red 8BL dye under visible light irradiation.

2.
Heliyon ; 10(10): e31082, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813143

ABSTRACT

The reaction of sulfamethoxazolehydrazonoyl chloride with thiosemicarbazones, bis-thiosemicarbazones, or 4-amino-3-mercapto-1,2,4-triazole in dioxane in the presence of triethylamine as a basic catalyst at reflux resulted in the regioselective synthesis of thiazoles and bis-thiazoles linked to azo-sulfamethoxazole as novel hybrid molecules. The structures of the new compounds were confirmed using a range of spectra. Each compound's antibacterial properties were evaluated using the agar well-diffusion technique, and most of them demonstrated significant potency. In silico investigations revealed that the described compounds had strong interactions with the binding sites of MurE ligase, tyrosyl-tRNA synthetase, and dihydropteroate synthase, demonstrating inhibitory activity.

3.
J Alzheimers Dis ; 99(3): 927-939, 2024.
Article in English | MEDLINE | ID: mdl-38728191

ABSTRACT

Background: Autophagy and apoptosis are cellular processes that maintain cellular homeostasis and remove damaged or aged organelles or aggregated and misfolded proteins. Stress factors initiate the signaling pathways common to autophagy and apoptosis. An imbalance in the autophagy and apoptosis, led by cascade of molecular mechanism prior to both processes culminate into neurodegeneration. Objective: In present study, we urge to investigate the codon usage pattern of genes which are common before initiating autophagy and apoptosis. Methods: In the present study, we took up eleven genes (DAPK1, BECN1, PIK3C3 (VPS34), BCL2, MAPK8, BNIP3 L (NIX), PMAIP1, BAD, BID, BBC3, MCL1) that are part of molecular signaling mechanism prior to autophagy and apoptosis. We analyzed dinucleotide odds ratio, codon bias, usage, context, and rare codon analysis. Results: CpC and GpG dinucleotides were abundant, with the dominance of G/C ending codons as preferred codons. Clustering analysis revealed that MAPK8 had a distinct codon usage pattern compared to other envisaged genes. Both positive and negative contexts were observed, and GAG-GAG followed by CTG-GCC was the most abundant codon pair. Of the six synonymous arginine codons, two codons CGT and CGA were the rarest. Conclusions: The information presented in the study may be used to manipulate the process of autophagy and apoptosis and to check the pathophysiology associated with their dysregulation.


Subject(s)
Apoptosis , Autophagy , Neurodegenerative Diseases , Autophagy/genetics , Humans , Apoptosis/genetics , Neurodegenerative Diseases/genetics , Codon Usage/genetics , Computer Simulation , Codon/genetics
4.
Drug Des Devel Ther ; 18: 1547-1571, 2024.
Article in English | MEDLINE | ID: mdl-38737333

ABSTRACT

The Coronavirus disease 2019 (COVID-19) pandemic is one of the most considerable health problems across the world. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the major causative agent of COVID-19. The severe symptoms of this deadly disease include shortness of breath, fever, cough, loss of smell, and a broad spectrum of other health issues such as diarrhea, pneumonia, bronchitis, septic shock, and multiple organ failure. Currently, there are no medications available for coronavirus patients, except symptom-relieving drugs. Therefore, SARS-CoV-2 requires the development of effective drugs and specific treatments. Heterocycles are important constituents of more than 85% of the physiologically active pharmaceutical drugs on the market now. Several FDA-approved drugs have been reported including molnupiravir, remdesivir, ritonavir, oseltamivir, favipiravir, chloroquine, and hydroxychloroquine for the cure of COVID-19. In this study, we discuss potent anti-SARS-CoV-2 heterocyclic compounds that have been synthesized over the past few years. These compounds included; indole, piperidine, pyrazine, pyrimidine, pyrrole, piperazine, quinazoline, oxazole, quinoline, isoxazole, thiazole, quinoxaline, pyrazole, azafluorene, imidazole, thiadiazole, triazole, coumarin, chromene, and benzodioxole. Both in vitro and in silico studies were performed to determine the potential of these heterocyclic compounds in the fight against various SARS-CoV-2 proteins.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Heterocyclic Compounds , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/therapeutic use , SARS-CoV-2/drug effects , COVID-19
5.
J Cell Mol Med ; 28(9): e18358, 2024 May.
Article in English | MEDLINE | ID: mdl-38693868

ABSTRACT

Gastric cancer is considered a class 1 carcinogen that is closely linked to infection with Helicobacter pylori (H. pylori), which affects over 1 million people each year. However, the major challenge to fight against H. pylori and its associated gastric cancer due to drug resistance. This research gap had led our research team to investigate a potential drug candidate targeting the Helicobacter pylori-carcinogenic TNF-alpha-inducing protein. In this study, a total of 45 daidzein derivatives were investigated and the best 10 molecules were comprehensively investigated using in silico approaches for drug development, namely pass prediction, quantum calculations, molecular docking, molecular dynamics simulations, Lipinski rule evaluation, and prediction of pharmacokinetics. The molecular docking study was performed to evaluate the binding affinity between the target protein and the ligands. In addition, the stability of ligand-protein complexes was investigated by molecular dynamics simulations. Various parameters were analysed, including root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), radius of gyration (Rg), hydrogen bond analysis, principal component analysis (PCA) and dynamic cross-correlation matrix (DCCM). The results has confirmed that the ligand-protein complex CID: 129661094 (07) and 129664277 (08) formed stable interactions with the target protein. It was also found that CID: 129661094 (07) has greater hydrogen bond occupancy and stability, while the ligand-protein complex CID 129664277 (08) has greater conformational flexibility. Principal component analysis revealed that the ligand-protein complex CID: 129661094 (07) is more compact and stable. Hydrogen bond analysis revealed favourable interactions with the reported amino acid residues. Overall, this study suggests that daidzein derivatives in particular show promise as potential inhibitors of H. pylori.


Subject(s)
Helicobacter pylori , Isoflavones , Molecular Docking Simulation , Molecular Dynamics Simulation , Helicobacter pylori/drug effects , Helicobacter pylori/metabolism , Isoflavones/pharmacology , Isoflavones/chemistry , Isoflavones/metabolism , Humans , Hydrogen Bonding , Ligands , Protein Binding , Principal Component Analysis , Helicobacter Infections/microbiology , Helicobacter Infections/drug therapy , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/antagonists & inhibitors , Stomach Neoplasms/microbiology , Stomach Neoplasms/drug therapy
6.
ACS Omega ; 9(19): 20728-20752, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38764672

ABSTRACT

Benzofurans have intrigued both pharmaceutical researchers and chemists owing to the medicinal usage of their derivatives against copious disease-causing agents (i.e., bacteria, viruses, and tumors). These heterocyclic scaffolds are pervasively encountered in a number of natural products and drugs. The ever-increasing utilization of benzofuran derivatives as pharmaceutical agents persuaded the chemists to devise novel and facile methodological approaches to assemble the biologically potent benzofuran nucleus. This review summarizes the current developments regarding the innovative synthetic routes and catalytic strategies to procure the synthesis of benzofuran heterocycles with their corresponding mechanistic details, reported by several research groups during 2021-2023.

7.
Saudi Pharm J ; 32(6): 102095, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38766274

ABSTRACT

Background: According to the International Diabetes Federation, there will be 578 million individuals worldwide with diabetes by 2030 and 700 million by 2045. One of the promising drug targets to fight diabetes is α-glucosidase (AG), and its inhibitors may be used to manage diabetes by reducing the breakdown of complex carbohydrates into simple sugars. The study aims to identify and validate potential AG inhibitors in natural sources to combat diabetes. Methods: Computational techniques such as structure-based virtual screening and molecular dyncamic simulation were employed to predict potential AG inhibitors from compounds of Oroxylum indicum. Finally, in silico results were validated by in vitro analysis using n-butanol fraction of crude methanol extracts. Results: The XP glide scores of top seven hits OI_13, OI_66, OI_16, OI_44, OI_43, OI_20, OI_78 and acarbose were -14.261, -13.475, -13.074, -13.045, -12.978, -12.659, -12.354 and -12.296 kcal/mol, respectively. These hits demonstrated excellent binding affinity towards AG, surpassing the known AG inhibitor acarbose. The MM-GBSA dG binding energies of OI_13, OI_66, and acarbose were -69.093, -62.950, and -53.055 kcal/mol, respectively. Most of the top hits were glycosides, indicating that active compounds lie in the n-butanol fraction of the extract. The IC50 value for AG inhibition by n-butanol fraction was 248.1 µg/ml, and for that of pure acarbose it was 89.16 µg/ml. The predicted oral absorption rate in humans for the top seven hits was low like acarbose, which favors the use of these compounds as anti-diabetes in the small intestine. Conclusion: In summary, the study provides promising insights into the use of natural compounds derived from O. indicum as potential AG inhibitors to manage diabetes. However, further research, including clinical trials and pharmacological studies, would be necessary to validate their efficacy and safety before clinical use.

8.
Pharmaceuticals (Basel) ; 17(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38794122

ABSTRACT

Single-point mutations in the Kirsten rat sarcoma (KRAS) viral proto-oncogene are the most common cause of human cancer. In humans, oncogenic KRAS mutations are responsible for about 30% of lung, pancreatic, and colon cancers. One of the predominant mutant KRAS G12D variants is responsible for pancreatic cancer and is an attractive drug target. At the time of writing, no Food and Drug Administration (FDA) approved drugs are available for the KRAS G12D mutant. So, there is a need to develop an effective drug for KRAS G12D. The process of finding new drugs is expensive and time-consuming. On the other hand, in silico drug designing methodologies are cost-effective and less time-consuming. Herein, we employed machine learning algorithms such as K-nearest neighbor (KNN), support vector machine (SVM), and random forest (RF) for the identification of new inhibitors against the KRAS G12D mutant. A total of 82 hits were predicted as active against the KRAS G12D mutant. The active hits were docked into the active site of the KRAS G12D mutant. Furthermore, to evaluate the stability of the compounds with a good docking score, the top two complexes and the standard complex (MRTX-1133) were subjected to 200 ns MD simulation. The top two hits revealed high stability as compared to the standard compound. The binding energy of the top two hits was good as compared to the standard compound. Our identified hits have the potential to inhibit the KRAS G12D mutation and can help combat cancer. To the best of our knowledge, this is the first study in which machine-learning-based virtual screening, molecular docking, and molecular dynamics simulation were carried out for the identification of new promising inhibitors for the KRAS G12D mutant.

9.
ACS Omega ; 9(12): 13666-13679, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38559991

ABSTRACT

The catalytic activity of chitosan (Cs) and grafted Cs led to the preparation of terephthalohydrazide Cs Schiff's base hydrogel (TCsSB), which was then investigated as an eco-friendly biocatalyst for synthesizing novel thiazole derivatives. TCsSB exhibited greater surface area and higher thermal stability compared to Cs, making it a promising eco-friendly biocatalyst. We synthesized two novel series of thiazoles via the reaction of 2-(2-oxo-1,2-diphenylethylidene) hydrazine-1-carbothioamide with various hydrazonoyl chlorides and 2-bromo-1-arylethan-1-ones, employing ultrasonic irradiation and using TCsSB as a catalyst. A comparative study between Cs and TCsSB revealed higher yields than TCsSB. The methodology offered advantages such as mild reaction conditions, quick reaction times, and high yields. TCsSB could be reused multiple times without a significant loss of potency. The chemical structures of the newly synthesized compounds were verified through IR, 1H NMR, 13C NMR, and MS analyses. Six synthesized compounds were assessed for their in vitro antibacterial effectiveness by establishing the minimum inhibitory concentration against four distinct bacterial strains. The docking analyses revealed favorable binding scores against several amino acids within the selected protein (PDB Code-1MBT) for these compounds, with compound 4c exhibiting particularly noteworthy binding properties. Additionally, the in silico ADME parameter estimation for all compounds indicated favorable pharmacological properties for these compounds.

10.
Front Chem ; 12: 1372378, 2024.
Article in English | MEDLINE | ID: mdl-38645776

ABSTRACT

Theophylline, a nitrogen-containing heterocycle, serves as a promising focal point for medicinal researchers aiming to create derivatives with diverse pharmacological applications. In this work, we present an improved synthetic method for a range of theophylline-1,2,4-triazole-S-linked N-phenyl acetamides (4a‒g) utilizing ultrasound-assisted synthetic approach. The objective was to assess the effectiveness of synthesized theophylline-1,2,4-triazoles (4a‒g) as inhibitors of HCV serine protease and as antibacterial agents against B. subtilis QB-928 and E. coli AB-274. Theophylline-1,2,4-triazoles were obtained in good to excellent yields (69%-95%) in a shorter time than conventional approach. 4-Chlorophenyl moiety containing theophylline-1,2,4-triazole 4c displayed significantly higher inhibitory activity against HCV serine protease enzyme (IC50 = 0.015 ± 0.25 mg) in comparison to ribavirin (IC50 = 0.165 ± 0.053 mg), but showed excellent binding affinity (-7.55 kcal/mol) with the active site of serine protease, better than compound 4c (-6.90 kcal/mol) as well as indole-based control compound 5 (-7.42 kcal/mol). In terms of percentage inhibition of serine protease, 2-chlorophenyl compound 4b showed the maximum percentage inhibition (86%), more than that of the 3,4-dichlorophenyl compound 4c (76%) and ribavirin (81%). 3,4-Dimethylphenyl-based theophylline-1,2,4-triazole 4g showed the lowest minimum inhibitory concentration (MIC = 0.28 ± 0.50 µg/mL) against the B. subtilis bacterial strain as compared to the standard drug penicillin (MIC = 1 ± 1.50 µg/mL). The other 4-methylphenyl theophylline-1,2,4-triazole 4e (MIC = 0.20 ± 0.08 µg/mL) displayed the most potent antibacterial potential against E. coli in comparison to the standard drug penicillin (MIC = 2.4 ± 1.00 µg/mL). Molecular docking studies further helped in an extensive understanding of all of the interactions between compounds and the enzyme active site, and DFT studies were also employed to gain insights into the molecular structure of the synthesized compounds. The results indicated that theophylline-linked triazole derivatives 4b and 4c showed promise as leading contenders in the fight against the HCV virus. Moreover, compounds 4e and 4g demonstrated potential as effective chemotherapeutic agents against E. coli and B. subtilis, respectively. To substantiate these findings, additional in vivo studies and clinical trials are imperative, laying the groundwork for their integration into future drug design and development.

11.
Arch Pharm (Weinheim) ; : e2400010, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578079

ABSTRACT

A series of enantioenriched ß-indolyl ketones as aromatase inhibitors (AI) is synthesized through the Michael-type Friedel-Crafts alkylation of indole. A highly efficient bifunctionalized amino catalyst is developed to access structurally diverse ß-indolyl ketones in high yields (up to 91%) and excellent enantioselectivity (enantiomeric ratio up to 98:2). All the synthesized compounds demonstrated promising aromatase inhibitory potential, where ortho-substituted analogs (3c and 3e) were found most active with IC50 values of 0.68 and 0.90 µM, respectively. Both of these compounds exhibited significant cytotoxicity (IC50 = 0.34 and 0.37 µM) against the MCF-7 breast cancer cell line in the (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay. Molecular docking studies of the synthesized compounds demonstrate favorable binding interactions with the estrogens controlling CYP19A1 (3EQM) and metabolizing CYP3A4 (5VCC) enzymes. Molecular dynamic (MD) simulation analysis revealed the essentiality of heme-ligand interactions to build a stable protein-ligand complex. An average root mean square deviation of 0.35 nm observed during a 100-ns MD simulation and binding free energy in the range of -190 to -227 kJ/mol calculated by g_mmpbsa analysis authenticated the stability of the 3c-3EQM complex. ADMET and drug-likeness parameters supported the suitability of these indole derivatives as the drug lead to develop potent inhibitors for estrogen-dependent breast cancer.

12.
Heliyon ; 10(7): e29221, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38617929

ABSTRACT

4-Acetylpyridine 1 and malononitrile 2 were allowed to react in a 3MCRs with dimedone 3a or cyclohexa-1,3-dione 3b under reflux to afford 4-methyl-4-(pyridin-4-yl)-5,6,7,8-tetrahydro-4H-chromene derivatives 4a,b respectively. The mechanism of the reaction has been studied and the structures elucidated by analytical, spectral as well as X-ray crystallographic data. Heterocyclic compounds find widespread application in pharmaceutical and agrochemical products. Docking analyses were performed on the synthesized compounds to assess their binding modes with various amino acids of the target protein tubulin (PDB Code - 1SA0). The results indicated promising binding scores for compounds 4a and 4b, suggesting a strong affinity for the tubulin binding site. Finally, ADMET for the synthesized compounds 4a, 4b, 5, 8a and 8b were carried out. The drug likeness and pharmacokinetic properties of the prepared compounds were also evaluated. Notably, all of the novel compounds adhered to Lipinski's rule (Ro5) without any violations.

13.
J Biochem Mol Toxicol ; 38(4): e23638, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38613466

ABSTRACT

The pancreas is a heterocrine gland that has both exocrine and endocrine parts. Most pancreatic cancer begins in the cells that line the ducts of the pancreas and is called pancreatic ductal adenocarcinoma (PDAC). PDAC is the most encountered pancreatic cancer type. One of the most important characteristic features of PDAC is neuropathy which is primarily due to perineural invasion (PNI). PNI develops tumor microenvironment which includes overexpression of fibroblasts cells, macrophages, as well as angiogenesis which can be responsible for neuropathy pain. In tumor microenvironment inactive fibroblasts are converted into an active form that is cancer-associated fibroblasts (CAFs). Neurotrophins they also increase the level of Substance P, calcitonin gene-related peptide which is also involved in pain. Matrix metalloproteases are the zinc-associated proteases enzymes which activates proinflammatory interleukin-1ß into its activated form and are responsible for release and activation of Substance P which is responsible for neuropathic pain by transmitting pain signal via dorsal root ganglion. All the molecules and their role in being responsible for neuropathic pain are described below.


Subject(s)
Neuralgia , Pancreatic Neoplasms , Humans , Substance P , Neuralgia/etiology , Pancreas , Pancreatic Neoplasms/complications , Fibroblasts , Tumor Microenvironment
14.
ACS Omega ; 9(14): 16759-16774, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38617692

ABSTRACT

Cancer, a life-disturbing and lethal disease with a high global impact, causes significant economic, social, and health challenges. Breast cancer refers to the abnormal growth of cells originating from breast tissues. Hormone-dependent forms of breast cancer, such as those influenced by estrogen, prompt the exploration of estrogen receptors as targets for potential therapeutic interventions. In this study, we conducted e-QSAR molecular docking and molecular dynamics analyses on a diverse set of inhibitors targeting estrogen receptor alpha (ER-α). The e-QSAR model is based on a genetic algorithm combined with multilinear regression analysis. The newly developed model possesses a balance between predictive accuracy and mechanistic insights adhering to the OECD guidelines. The e-QSAR model pointed out that sp2-hybridized carbon and nitrogen atoms are important atoms governing binding profiles. In addition, a specific combination of H-bond donors and acceptors with carbon, nitrogen, and ring sulfur atoms also plays a crucial role. The results are supported by molecular docking, MD simulations, and X-ray-resolved structures. The novel results could be useful for future drug development for ER-α.

15.
Front Chem ; 12: 1325354, 2024.
Article in English | MEDLINE | ID: mdl-38516612

ABSTRACT

Corrosion is a major problem that can lead to the degradation of metal structures. In this study, we developed a novel corrosion-protective coating for metal substrates based on a modified epoxy acrylate formulation reinforced with halloysite nanotubes (HNTs). Epoxy acrylate oligomers were first synthesized through the acrylation of epoxy using acrylic acid, followed by copolymerization with butyl methacrylate/vinyl acetate monomers to produce grafted epoxy acrylates (GEA). HNTs were then incorporated into the polymeric dispersion at weight loadings of 1%, 1.5%, and 2%. The corrosion resistance and waterproofing properties of the coatings were evaluated. The results showed that steel samples coated with HNTs-modified GEA showed no signs of rusting even after 16 days of immersion in a corrosive solution, whereas those coated with GEA alone showed rusting after only 9 days. These results demonstrate the effectiveness of HNTs-modified GEA coatings in protecting steel surfaces against corrosion. The coatings are also water-resistant and can be easily applied. This work provides a new approach to developing corrosion-protective coatings for metal substrates.

16.
Comput Biol Chem ; 110: 108048, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38471353

ABSTRACT

The rise of drug resistance in Plasmodium falciparum, rendering current treatments ineffective, has hindered efforts to eliminate malaria. To address this issue, the study employed a combination of Systems Biology approach and a structure-based pharmacophore method to identify a target against P. falciparum. Through text mining, 448 genes were extracted, and it was discovered that plasmepsins, found in the Plasmodium genus, play a crucial role in the parasite's survival. The metabolic pathways of these proteins were determined using the PlasmoDB genomic database and recreated using CellDesigner 4.4.2. To identify a potent target, Plasmepsin V (PF13_0133) was selected and examined for protein-protein interactions (PPIs) using the STRING Database. Topological analysis and global-based methods identified PF13_0133 as having the highest centrality. Moreover, the static protein knockout PPIs demonstrated the essentiality of PF13_0133 in the modeled network. Due to the unavailability of the protein's crystal structure, it was modeled and subjected to a molecular dynamics simulation study. The structure-based pharmacophore modeling utilized the modeled PF13_0133 (PfPMV), generating 10 pharmacophore hypotheses with a library of active and inactive compounds against PfPMV. Through virtual screening, two potential candidates, hesperidin and rutin, were identified as potential drugs which may be repurposed as potential anti-malarial agents.


Subject(s)
Antimalarials , Molecular Dynamics Simulation , Plasmodium falciparum , Plasmodium falciparum/drug effects , Antimalarials/pharmacology , Antimalarials/chemistry , Drug Repositioning , Molecular Structure , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/metabolism , Aspartic Acid Endopeptidases/chemistry
17.
Curr Med Chem ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38500276

ABSTRACT

AIM: In this study, a neoteric and expedient oxidation method is applied for a variety of Hantzsch 1,4-dihydropyridine derivatives such as 1,4-dihydro- 2,6-dimethyl-3,5-diacetylpyridine, 3,5-bis-hydrazono--2,6-dimethyl-1,4-dihydropyridine, and 3,5-bis-thiazoly-2,6-dimethyl-1,4-dihydro pyridine. METHOD: This simple oxidation is based upon the in situ generation of nitrous acid from an aqueous sodium nitrite and acetic acid mixture and could be used to downgrade costs, sustain resources, and minimize chemical wastes. Also, a molecular modeling strategy was used to study the mechanism of action for various derivatives of bis-hydrazinylidene- thiazole as the protein Vascular Endothelial Growth Factor Receptor Tyrosine Kinase (VEGFR TK) inhibitor through evaluating their binding scores and modes compared with Sorafenib as a reference standard. RESULT: The results revealed that the interaction of hydrazinylidene and thiazole as an anticancer Tyrosine Kinase inhibitor has been improved. CONCLUSION: Additionally, the compounds exhibiting the highest activity were assessed for their potential anticancer effects against HepG-2, MCF-7, and WI-38 cells, and the outcomes demonstrated encouraging activity against cancer.

18.
ACS Omega ; 9(9): 10146-10159, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38463260

ABSTRACT

A series of novel thieno[2,3-b]pyridines linked to N-aryl carboxamides or (carbonylphenoxy)-N-(aryl)acetamides, as well as bis(thieno[2,3-b]pyridines) linked to piperazine core via methanone or carbonylphenoxyethanone units, were synthesized by treating the appropriate chloroacetyl- or bis-bromoacetyl derivatives with 2-mercaptonicotinonitrile derivatives in ethanolic sodium ethoxide at reflux. The spectral data were used to determine the compositions of novel compounds.

19.
Nutr Neurosci ; : 1-15, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38462971

ABSTRACT

OBJECTIVE: An imbalance between the generation of reactive oxygen species (ROS) and the body's antioxidant defense mechanisms is believed to be a critical factor in the development of schizophrenia (SCZ) like neurological illnesses. Understanding the roles of ROS in the development of SCZ and the potential activity of natural antioxidants against SCZ could lead to more effective therapeutic options for the prevention and treatment of the illness. METHODS: SCZ is a mental disorder characterised by progressive impairments in working memory, attention, and executive functioning. In present investigation, we summarized the experimental findings for understanding the role of oxidative stress (OS) in the development of SCZ and the potential neuroprotective effects of natural antioxidants in the treatment of SCZ. RESULTS: Current study supports the use of the mentioned antioxidant natural compounds as a potential therapeutic candidates for the treatment of OS mediated neurodegeneration in SCZ. DISCUSSION: Elevated levels of harmful ROS and reduced antioxidant defense mechanisms are indicative of increased oxidative stress (OS), which is associated with SCZ. Previous research has shown that individuals with SCZ, including non-medicated, medicated, first-episode, and chronic patients, exhibit decreased levels of total antioxidants and GSH. Additionally, they have reduced antioxidant enzyme levels such as catalase (CAT), glutathione (GPx), and, superoxide dismutase (SOD) and lower serum levels of brain-derived neurotrophic factor (BDNF) in their brain tissue. The mentioned natural antioxidants may assist in reducing oxidative damage in individuals with SCZ and increasing BDNF expression in the brain, potentially improving cognitive function and learning ability.

20.
J Biomol Struct Dyn ; : 1-31, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38385447

ABSTRACT

A lysine-specific demethylase is an enzyme that selectively eliminates methyl groups from lysine residues. KDM5A, also known as JARID1A or RBP2, belongs to the KDM5 Jumonji histone demethylase subfamily. To identify novel molecules that interact with the LSD5A receptor, we created a quantitative structure-activity relationship (QSAR) model. A group of 435 compounds was used in a study of the quantitative relationship between structure and activity to guess the IC50 values for blocking LASD5A. We used a genetic algorithm-multilinear regression-based quantitative structure-activity connection model to forecast the bioactivity (PIC50) of 1615 food and drug administration pharmaceuticals from the zinc database with the goal of repurposing clinically used medications. We used molecular docking, molecular dynamic simulation modelling, and molecular mechanics generalised surface area analysis to investigate the molecule's binding mechanism. A genetic algorithm and multi-linear regression method were used to make six variable-based quantitative structure-activity relationship models that worked well (R2 = 0.8521, Q2LOO = 0.8438, and Q2LMO = 0.8414). ZINC000000538621 was found to be a new hit against LSD5A after a quantitative structure-activity relationship-based virtual screening of 1615 zinc food and drug administration compounds. The docking analysis revealed that the hit molecule 11 in the KDM5A binding pocket adopted a conformation similar to the pdb-6bh1 ligand (docking score: -8.61 kcal/mol). The results from molecular docking and the quantitative structure-activity relationship were complementary and consistent. The most active lead molecule 11, which has shown encouraging results, has good absorption, distribution, metabolism, and excretion (ADME) properties, and its toxicity has been shown to be minimal. In addition, the MTT assay of ZINC000000538621 with MCF-7 cell lines backs up the in silico studies. We used molecular mechanics generalise borne surface area analysis and a 200-ns molecular dynamics simulation to find structural motifs for KDM5A enzyme interactions. Thus, our strategy will likely expand food and drug administration molecule repurposing research to find better anticancer drugs and therapies.Communicated by Ramaswamy H. Sarma.

SELECTION OF CITATIONS
SEARCH DETAIL
...