Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(6)2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38541532

ABSTRACT

The corrosion protection property of three Brij-type surfactants, namely, Brij 35, Brij 56 and Brij 58P, was considered on OLC 45 carbon steel in a 0.5 M H2SO4 medium. The efficacy for these organic compounds was examined using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) methods, scanning electron microscopy (SEM) procedures, and Fourier transform infrared (FT-IR) spectroscopy. We hypothesized that these surfactants hinder the corrosion for OLC 45 samples through a protecting mechanism owing to the adsorption of organic molecules that form an inhibitive film or through the formation of complex oxides. These surfactants exhibited an appreciable protective effect against OLC 45 corrosion, operating as mixed inhibitors, as could be demonstrated by their influence on the electrochemical characteristics of the metallic substrates. The adsorption of surfactants over the substrates zone conformed to the representation of the Langmuir isotherm. The effect of temperature on the electrochemical comportment of the OLC 45 specimens in H2SO4 without and with Brij at 800 ppm was examined in the temperature interval of 293 to 333 K. The negative estimate of thermodynamic attributed as Gibbs free energy of adsorption presented the spontaneity of the adsorption activity. The investigation with FT-IR and SEM established the adsorption of Brij and the constitution of the corrosive components on the OLC 45 surface. Electrochemical determinations of these surfactants indicated its anticorrosion inhibition performance and the highest inhibition of 96% was reached when the Brij 35 concentration was at 800 or 1000 ppm, while for Brij 56 and Brij 58P, the highest inhibition was obtained when their concentrations were 500, 800, or 1000 ppm.

2.
ACS Omega ; 7(27): 23800-23814, 2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35847258

ABSTRACT

Cu2ZnSnS4 (CZTS) is regarded as one of the emerging materials for next-generation thin film solar cells. However, its synthesis is complex, and obtaining a single-phase CZTS thin film is difficult. This work reports the elaboration of Cu2ZnSnS4 thin films by a sequential magnetron sputtering deposition of Cu2SnS3 (CTS) and ZnS as stacked films. Initially, the CTS films were prepared on a soda lime glass substrate by annealing Cu and SnS2 stacked layers. Second, ZnS was deposited by magnetron sputtering on the CTS films. The CTS\ZnS stacks were then annealed in Sn + S or S atmospheres. The tetragonal CZTS structure was obtained and confirmed by grazing incidence X-ray diffraction and Raman spectroscopy. The morphological and compositional characteristics, measured by scanning electron microscopy and energy-dispersive spectroscopy, revealed large grains and dense surfaces with the elemental composition close to the intended stoichiometry. Additional X-ray photoemission spectroscopy measurements were performed to determine the surface chemistry and particularities of the obtained films. The optical properties, determined using conventional spectroscopy, showed optimal absorber layer band gap values ranging between 1.38 and 1.50 eV. The electrical measurements showed that all the films are p-type with high carrier concentrations in the range of 1015 to 1020 cm-3. This new synthesis route for CZTS opens the way to obtain high-quality films by an industry-compatible method.

3.
Nanomaterials (Basel) ; 11(9)2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34578719

ABSTRACT

Cu2ZnSnS4 (CZTS) is a complex quaternary material, and obtaining a single-phase CZTS with no secondary phases is known to be challenging and dependent on the production technique. This work involves the synthesis and characterization of CZTS absorber layers for solar cells. Thin films were deposited on Si and glass substrates by a combined magnetron sputtering (MS) and pulsed laser deposition (PLD) hybrid system, followed by annealing without and with sulfur powder at 500 °C under argon (Ar) flow. Three different Cu2S, SnS2, and ZnS targets were used each time, employing a different target for PLD and the two others for MS. The effect of the different target arrangements and the role of annealing and/or sulfurization treatment were investigated. The characterization of the absorber films was performed by grazing incidence X-ray diffraction (GIXRD), X-ray reflectometry (XRR), Raman spectroscopy, scanning electron microscopy, and regular transmission spectroscopy. The film with ZnS deposited by PLD and SnS2 and Cu2S by MS was found to be the best for obtaining a single CZTS phase, with uniform surface morphology, a nearly stoichiometric composition, and an optimal band gap of 1.40 eV. These results show that a new method that combines the advantages of both MS and PLD techniques was successfully used to obtain single-phase Cu2ZnSnS4 films for solar cell applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...