Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(49): 55277-55284, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36445833

ABSTRACT

The spallation of isolated aluminum (Al) nanoparticles (NPs) is initiated using rapid photothermal heating. The Al NPs exhibited a nominal diameter of 120 nm, with an average oxide shell thickness of 3.8 nm. Photothermal heating was achieved by coupling a focused laser (446 nm wavelength) to an optical grating substrate and to the plasmonic resonance of the Al NPs themselves. These factors enhanced the absorption cross section by a factor of 8-18 compared to no substrate and generated an Al NP heating rate on the order of 107-108 K/s. Observations indicate that molten Al is ejected from the heated NP, indicating that melting of the Al core is required for spallation. A graphene layer atop the grating substrate encouraged the formation of discrete particles of ejected Al, while irregular elongated filament products were observed without the graphene layer. Numerical simulations indicate that laser-heated Al NPs reach temperatures between approximately 1000 and 1500 K. These observations and experimental conditions are consistent with those anticipated for the melt dispersion mechanism, a thermomechanical reaction mechanism that has not previously been clearly demonstrated. Activating and controlling this mechanism is anticipated to enhance applications ranging from biological phototherapy to energetic materials.

2.
Sensors (Basel) ; 21(5)2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33668303

ABSTRACT

Partially aggregated Rhodamine 6G (R6G) dye is used as a lights-on temperature sensor to analyze the spatiotemporal heating of aluminum nanoparticles (Al NPs) embedded within a tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride (THV) fluoropolymer matrix. The embedded Al NPs were photothermally heated using an IR laser, and the fluorescent intensity of the embedded dye was monitored in real time using an optical microscope. A plasmonic grating substrate enhanced the florescence intensity of the dye while increasing the optical resolution and heating rate of Al NPs. The fluorescence intensity was converted to temperature maps via controlled calibration. The experimental temperature profiles were used to determine the Al NP heat generation rate. Partially aggregated R6G dyes, combined with the optical benefits of a plasmonic grating, offered robust temperature sensing with sub-micron spatial resolution and temperature resolution on the order of 0.2 °C.

SELECTION OF CITATIONS
SEARCH DETAIL
...