Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Photonics ; 10(12): 4282-4289, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38145165

ABSTRACT

Hybrid integration of photonic chips with electronic and micromechanical circuits is projected to bring about miniature, but still highly accurate and reliable, laser spectroscopic sensors for both climate research and industrial applications. However, the sensitivity of chip-scale devices has been limited by immature and lossy photonic waveguides, weak light-analyte interaction, and etalon effects from chip facets and defects. Addressing these challenges, we present a nanophotonic waveguide for methane detection at 3270.4 nm delivering a limit of detection of 0.3 ppm, over 2 orders of magnitude lower than the state-of-the-art of on-chip spectroscopy. We achieved this result with a Si slot waveguide designed to maximize the light-analyte interaction, while special double-tip fork couplers at waveguide facets suppress spurious etalon fringes. We also study and discuss the effect of adsorbed humidity on the performance of mid-infrared waveguides around 3 µm, which has been repeatedly overlooked in previous reports.

2.
Nanomaterials (Basel) ; 13(10)2023 May 13.
Article in English | MEDLINE | ID: mdl-37242050

ABSTRACT

Chiral plasmonic nanostructures have emerged as promising objects for numerous applications in nanophotonics, optoelectronics, biosensing, chemistry, and pharmacy. Here, we propose a novel method to induce strong chirality in achiral ensembles of gold nanoparticles via irradiation with circularly-polarized light of a picosecond Nd:YAG laser. Embedding of gold nanoparticles into a nanoporous silicate matrix leads to the formation of a racemic mixture of metal nanoparticles of different chirality that is enhanced by highly asymmetric dielectric environment of the nanoporous matrix. Then, illumination with intense circularly-polarized light selectively modifies the particles with the chirality defined by the handedness of the laser light, while their "enantiomers" survive the laser action almost unaffected. This novel modification of the spectral hole burning technique leads to the formation of an ensemble of plasmonic metal nanoparticles that demonstrates circular dichroism up to 100 mdeg. An unforeseen peculiarity of the chiral nanostructures obtained in this way is that 2D and 3D nanostructures contribute almost equally to the observed circular dichroism signals. Thus, the circular dichroism is neither even nor odd under reversal of direction of light propagation. These findings will help guide the development of a passive optical modulator and nanoplatform for enhanced chiral sensing and catalysis.

3.
Nanomaterials (Basel) ; 11(1)2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33430472

ABSTRACT

Laser direct writing technique in glass is a powerful tool for various waveguides' fabrication that highly develop the element base for designing photonic devices. We apply this technique to fabricate waveguides in porous glass (PG). Nanoporous optical materials for the inscription can elevate the sensing ability of such waveguides to higher standards. The waveguides were fabricated by a single-scan approach with femtosecond laser pulses in the densification mode, which resulted in the formation of a core and cladding. Experimental studies revealed three types of waveguides and quantified the refractive index contrast (up to Δn = 1.2·10-2) accompanied with ~1.2 dB/cm insertion losses. The waveguides demonstrated the sensitivity to small objects captured by the nanoporous framework. We noticed that the deposited ethanol molecules (3 µL) on the PG surface influence the waveguide optical properties indicating the penetration of the molecule to its cladding. Continuous monitoring of the output near field intensity distribution allowed us to determine the response time (6 s) of the waveguide buried at 400 µm below the glass surface. We found that the minimum distinguishable change of the refractive index contrast is 2 × 10-4. The results obtained pave the way to consider the waveguides inscribed into PG as primary transducers for sensor applications.

4.
Nanomaterials (Basel) ; 10(11)2020 Oct 30.
Article in English | MEDLINE | ID: mdl-33143236

ABSTRACT

In this work, we suggest the new concept of sensing elements-bulk waveguides (BWGs) fabricated by the laser direct writing technique inside porous glass (PG). BWGs in nanoporous materials are promising to be applied in the photonics and sensors industries. Such light-guiding components interrogate the internal conditions of nanoporous materials and are able to detect chemical or physical reactions occurring inside nanopores especially with small molecules, which represent a separate class for sensing technologies. After the writing step, PG plates are impregnated with the indicator-rhodamine 6G-which penetrates through the nanoporous framework to the BWG cladding. The experimental investigation proved the concept by measuring the spectral characteristics of an output signal. We have demonstrated that the BWG is sensitive to ethanol molecules captured by the nanoporous framework. The sensitivity of the peak shift in the fluorescence spectrum to the refractive index of the solution is quantified as 6250 ± 150 nm/RIU.

5.
Nanomaterials (Basel) ; 10(6)2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32521654

ABSTRACT

Laser-induced structuring in nanoporous glass composites is promising for numerous emerging applications in photonics and plasmonics. Local laser irradiation activates an interplay of photo-thermo-chemical mechanisms that are extremely difficult to control. The choice of optimum laser parameters to fabricate structures with desired properties remains extremely challenging. Another challenging issue is the investigation of the properties of laser-induced buried structures. In this paper, we propose a way to control the plasmonic structures formation inside a nanoporous glass composite with doped silver/copper ions that are induced by laser irradiation. Experimental and numerical investigations both demonstrate the capacities of the procedure proving its validity and application potential. In particular, we register transmitted laser power to analyse and control the modification process. Spectral micro-analysis of the irradiated region shows a multilayer plasmonic structure inside the glass composite. Subsequently, the effective medium theory connects the measured spectral data to the numerically estimated size, concentration, and chemical composition of the secondary phase across the initial GC sample and the fabricated structure.

6.
Nanomaterials (Basel) ; 11(1)2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33396706

ABSTRACT

Laser-induced thermochemical recording of nano- and microsized structures on thin films has attracted intense interest over the last few decades due to essential applications in the photonics industry. Nevertheless, the relationship between the laser parameters and the properties of the formed oxide structures, both geometrical and optical, is still implicit. In this work, direct laser interference patterning of the titanium (Ti) film in the oxidative regime was applied to form submicron periodical structures. Depending on the number of laser pulses, the regime of high contrast structures recording was observed with the maximum achievable thickness of the oxide layer. The investigation revealed high transmittance of the formed oxide layers, i.e., the contrast of recorded structures reached up to 90% in the visible range. To analyze the experimental results obtained, a theoretical model was developed based on calculations of the oxide formation dynamics. The model operates on Wagner oxidation law and the corresponding optical properties of the oxide-metal-glass substrate system changing nonlinearly after each pulse. A good agreement of the experimental results with the modeling estimations allowed us to extend the model application to other metals, specifically to those with optically transparent oxides, such as zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), and tantalum (Ta). The performed analysis highlighted the importance of choosing the correct laser parameters due to the complexity and nonlinearity of optical, thermal, and chemical processes in the metal film during its laser-induced oxidation in the air. The developed model allowed selecting the suitable temporal-energetic regimes and predicting the optical characteristics of the structures formed with an accuracy of 10%. The results are promising in terms of their implementation in the photonics industry for the production of optical converters.

7.
Opt Express ; 26(21): 28150-28160, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30469870

ABSTRACT

Barriers were produced in porous glass through its local bulk density modification by direct femtosecond writing accompanied by СО2-laser surface thermal densification, to make functional microfluidic elements separated by such physical barriers with different controlled permeability. The separation of multi-component solutions into individual components with different molecule sizes (molecular separation) was performed in this first integrated microfluidic device fabricated in porous glass. Its application in the environmental gas-phase analysis was demonstrated.

SELECTION OF CITATIONS
SEARCH DETAIL
...