Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(24)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38133036

ABSTRACT

Neuromorphic photonics is a cutting-edge fusion of neuroscience-inspired computing and photonics technology to overcome the constraints of conventional computing architectures. Its significance lies in the potential to transform information processing by mimicking the parallelism and efficiency of the human brain. Using optics and photonics principles, neuromorphic devices can execute intricate computations swiftly and with impressive energy efficiency. This innovation holds promise for advancing artificial intelligence and machine learning while addressing the limitations of traditional silicon-based computing. Neuromorphic photonics could herald a new era of computing that is more potent and draws inspiration from cognitive processes, leading to advancements in robotics, pattern recognition, and advanced data processing. This paper reviews the recent developments in neuromorphic photonic integrated circuits, applications, and current challenges.

2.
Nanomaterials (Basel) ; 13(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36616103

ABSTRACT

Lab-on-a-chip systems are currently one of the most promising areas in the development of ultra-compact sensor systems, used primarily for gas and liquid analysis to determine the concentration of impurities. Integrated photonics is an ideal basis for designing "lab-on-a-chip" systems, advantageous for its compactness, energy efficiency, and low cost in mass production. This paper presents a solution for "lab-on-a-chip" device realization, consisting of a sensor and an interrogator based on a silicon-on-insulator (SOI) integrated photonics platform. The sensor function is performed by an all-pass microring resonator (MRR), installed as a notch filter in the feedback circuit of an optoelectronic oscillator based on an electro-optic phase modulator. This structure realizes the frequency interrogation of the sensor with high accuracy and speed using a conventional single-mode laser source. The system sensitivity for the considered gases is 13,000 GHz/RIU. The results show that the use of frequency interrogation makes it possible to increase the intrinsic LoD by five orders. The proposed solution opens an opportunity for fully integrated implementation of a photonic "laboratory-on-a-chip" unit.

3.
Sensors (Basel) ; 22(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36502253

ABSTRACT

The design of a refractometric sensing system for liquids analysis with a sensor and the scheme for its intensity interrogation combined on a single photonic integrated circuit (PIC) is proposed. A racetrack microring resonator with a channel for the analyzed liquid formed on the top is used as a sensor, and another microring resonator with a lower Q-factor is utilized to detect the change in the resonant wavelength of the sensor. As a measurement result, the optical power at its drop port is detected in comparison with the sum of the powers at the through and drop ports. Simulations showed the possibility of registering a change in the analyte refractive index with a sensitivity of 110 nm per refractive index unit. The proposed scheme was analyzed with a broadband source, as well as a source based on an optoelectronic oscillator using an optical phase modulator. The second case showed the fundamental possibility of implementing an intensity interrogator on a PIC using an external typical single-mode laser as a source. Meanwhile, additional simulations demonstrated an increased system sensitivity compared to the conventional interrogation scheme with a broadband or tunable light source. The proposed approach provides the opportunity to increase the integration level of a sensing device, significantly reducing its cost, power consumption, and dimensions.


Subject(s)
Optics and Photonics , Refractometry , Equipment Design , Photons , Light
SELECTION OF CITATIONS
SEARCH DETAIL
...