Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Transplantation ; 71(1): 112-8, 2001 Jan 15.
Article in English | MEDLINE | ID: mdl-11211175

ABSTRACT

BACKGROUND: Hepatic ischemia/reperfusion (I/R) injury is associated with early and late graft failure after liver transplantation. A major mechanism is leukocyte adhesion to endothelium followed by release of reactive oxygen intermediates. We examined whether desferriexochelin 772SM (D-Exo), a lipid soluble iron chelator that prevents hydroxyl radical formation, can enhance the capacity of recombinant P-selectin glycoprotein ligand immunoglobulin (rPSGL-Ig), a glycoprotein that binds to P-selectin and inhibits neutrophil adhesion, to protect against I/R injury in an ex vivo rat liver model. METHODS: Rat livers were harvested and stored for 6 hr at 4 degrees C in University of Wisconsin solution and then perfused with oxygenated whole blood for 2 hr. Three groups were studied (n=6 rats/group): an untreated control group; a group that received 0.4 mg/kg rPSGL-Ig intraportally at the time of harvest; and a group that received 0.4 mg/kg rPSGL-Ig plus 1 micromol D-Exo intraportally both at the time of harvest and at the onset of reperfusion. Liver portal venous blood flow was assessed during perfusion, and at the end of each experiment, liver samples were collected for blinded histological evaluation and biochemical analyses. RESULTS: Livers treated with D-Exo + rPSGL-Ig had significantly higher blood flow than livers treated with rPSGL-1Ig alone (P<0.05), and both treatment groups had higher blood flow than controls (P<0.001). Production of carbonyl proteins, a protein oxidation product, was significantly reduced in the D-Exo + rPSGL-1Ig group (P<0.02 vs. controls), but not in the rPSGL-Ig alone group. Total reduced glutathione was significantly higher than controls in the D-Exo + rPSGL-Ig group (P<0.001 vs. controls), but not in the rPSGL-Ig alone group, indicating less oxidative stress in the D-Exo-treated group. Production of malondialdehyde, an index of lipid peroxidation, was significantly less than controls in both treatment groups (P<0.03). Histopathological findings paralleled these results with Banffs scores of 3.3+/-0.5, 1.8+/-0.4, and 1.3+/-0.5 in the control, rPSGL-Ig alone, and D-Exo plus rPSGL-Ig groups, resp. CONCLUSION: rPSGL-Ig provides partial protection against I/R injury to ex vivo rat livers; however, the addition of D-Exo substantially increases protection by reducing oxidative injury. These findings may have clinical relevance in preventing the consequences of I/R injury after liver transplantation.


Subject(s)
Iron Chelating Agents/therapeutic use , Membrane Glycoproteins/therapeutic use , Peptides, Cyclic/therapeutic use , Reperfusion Injury/prevention & control , Animals , Drug Therapy, Combination , Glutathione/analysis , Glutathione Disulfide/analysis , Ligands , Liver/anatomy & histology , Liver/blood supply , Liver/chemistry , Male , Malondialdehyde/analysis , Membrane Glycoproteins/antagonists & inhibitors , Models, Animal , Oxidative Stress/physiology , P-Selectin , Rats , Rats, Sprague-Dawley , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/therapeutic use , Regional Blood Flow/drug effects
2.
J Clin Invest ; 104(11): 1631-9, 1999 Dec.
Article in English | MEDLINE | ID: mdl-10587527

ABSTRACT

We examined the effects of upregulation of heme oxygenase-1 (HO-1) in steatotic rat liver models of ex vivo cold ischemia/reperfusion (I/R) injury. In the model of ischemia/isolated perfusion, treatment of genetically obese Zucker rats with the HO-1 inducer cobalt protoporphyrin (CoPP) or with adenoviral HO-1 (Ad-HO-1) significantly improved portal venous blood flow, increased bile production, and decreased hepatocyte injury. Unlike in untreated rats or those pretreated with the HO-1 inhibitor zinc protoporphyrin (ZnPP), upregulation of HO-1 by Western blots correlated with amelioration of histologic features of I/R injury. Adjunctive infusion of ZnPP abrogated the beneficial effects of Ad-HO-1 gene transfer, documenting the direct involvement of HO-1 in protection against I/R injury. Following cold ischemia/isotransplantation, HO-1 overexpression extended animal survival from 40% in untreated controls to about 80% after CoPP or Ad-HO-1 therapy. This effect correlated with preserved hepatic architecture, improved liver function, and depressed infiltration by T cells and macrophages. Hence, CoPP- or gene therapy-induced HO-1 prevented I/R injury in steatotic rat livers. These findings provide the rationale for refined new treatments that should increase the supply of usable donor livers and ultimately improve the overall success of liver transplantation.


Subject(s)
Heme Oxygenase (Decyclizing)/biosynthesis , Ischemia/pathology , Liver Transplantation/pathology , Liver/pathology , Obesity/genetics , Reperfusion Injury/pathology , Adenoviridae/genetics , Animals , Aspartate Aminotransferases/metabolism , Genetic Therapy , Heme Oxygenase (Decyclizing)/genetics , Heme Oxygenase-1 , Immunohistochemistry , Liver/drug effects , Male , Protoporphyrins , Rats , Rats, Zucker , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...