Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Macro Lett ; 11(9): 1148-1155, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36067070

ABSTRACT

Stereochemical control during polymerization is a key strategy of polymer chemistry to achieve semicrystalline engineered plastics. The stereoselective ring-opening polymerization (ROP) of racemic lactide (rac-LA), which can lead to highly isotactic polylactide (PLA), is one of the emblematic examples in this area. Surprisingly, stereoselective ROP of rac-LA employing chiral organocatalysts has been under-leveraged. Here we show that a commercially available chiral thiourea (TU1), or its urea homologue (U1), can be used in conjunction with an appropriately selected N-heterocyclic carbene (NHC) to trigger the stereoselective ROP of rac-LA at room temperature in toluene. Both a high organic catalysis activity (>90% monomer conversion in 5-9 h) and a high stereoselectivity (probability of formation of meso dyads, Pm, in the range 0.82-0.93) can be achieved by thus pairing a NHC and a chiral amino(thio)urea. The less sterically hindered and the more basic NHC, that is, a NHC bearing tert-butyl substituents (NHCtBu), provides the highest stereoselectivity when employed in conjunction with the chiral TU1 or U1. This asymmetric organic catalysis strategy, as applied here in polymerization chemistry, further expands the field of possibilities to achieve bioplastics with adapted thermomechanical properties.


Subject(s)
Polyesters , Urea , Dioxanes , Methane/analogs & derivatives , Plastics , Polyesters/chemistry , Polymerization , Stereoisomerism , Thiourea , Toluene
2.
Macromol Rapid Commun ; 43(20): e2200395, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35868609

ABSTRACT

Sequential block copolymerization involving comonomers belonging to different classes, e.g., a vinyl-type monomer and a heterocycle, is a challenging task in macromolecular chemistry, as corresponding propagating species do not interconvert easily from one to the other by crossover reactions. Here, it is first evidenced that 1-methoxy 2-methyl 1-trimethylsilyloxypropene (MTS), i.e., a silyl ketene acetal (SKA)-containing initiator, can be used in presence of the P4 -t-Bu phosphazene organic base to control the ring-opening polymerization (ROP) of racemic lactide (rac-LA). The elementary reaction, which rapidly transforms SKA groups into propagating alkoxides, can be leveraged to directly synthesize well-defined poly(methyl methacrylate)-b-polylactide block copolymers. This is achieved using P4 -t-Bu as the single organic catalyst and MTS as the initiator for the group transfer polymerization of methyl methacrylate, followed by the ROP of rac-LA. Both polymerization methods are implemented under selective and controlled/living conditions at room temperature in THF. This sequential addition strategy further expands the scope of organic catalysis of polymerizations for macromolecular engineering of block copolymers involving propagating species of disparate reactivity.


Subject(s)
Acetals , Polymethyl Methacrylate , Polymerization , Methylmethacrylate , Polymers/chemistry , Methacrylates
3.
Chem Commun (Camb) ; 57(31): 3777-3780, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33734228

ABSTRACT

Control of stereoregularity is inherent to precision polymerization chemistry for the development of functional materials. A prototypal example of this strategy is the ring-opening polymerization (ROP) of racemic lactide (rac-LA), a bio-sourced monomer. Despite significant advances in organocatalysis, stereoselective ROP of rac-LA employing chiral organocatalysts remains unexplored. Here we tackle that challenge by resorting to Takemoto's catalyst, a chiral aminothiourea, in the presence of a phosphazene base. This chiral binary organocatalytic system allows for fast, chemo- and stereoselective ROP of rac-LA at room temperature, yielding highly isotactic, semi-crystalline and metal-free polylactide, with a melting temperature as high as 187 °C.

SELECTION OF CITATIONS
SEARCH DETAIL
...