Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Adv Mater ; 36(7): e2309777, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37992676

ABSTRACT

The layered insulator hexagonal boron nitride (hBN) is a critical substrate that brings out the exceptional intrinsic properties of two-dimensional (2D) materials such as graphene and transition metal dichalcogenides (TMDs). In this work, the authors demonstrate how hBN slabs tuned to the correct thickness act as optical waveguides, enabling direct optical coupling of light emission from encapsulated layers into waveguide modes. Molybdenum selenide (MoSe2 ) and tungsten selenide (WSe2 ) are integrated within hBN-based waveguides and demonstrate direct coupling of photoluminescence emitted by in-plane and out-of-plane transition dipoles (bright and dark excitons) to slab waveguide modes. Fourier plane imaging of waveguided photoluminescence from MoSe2 demonstrates that dry etched hBN edges are an effective out-coupler of waveguided light without the need for oil-immersion optics. Gated photoluminescence of WSe2 demonstrates the ability of hBN waveguides to collect light emitted by out-of-plane dark excitons.Numerical simulations explore the parameters of dipole placement and slab thickness, elucidating the critical design parameters and serving as a guide for novel devices implementing hBN slab waveguides. The results provide a direct route for waveguide-based interrogation of layered materials, as well as a way to integrate layered materials into future photonic devices at arbitrary positions whilst maintaining their intrinsic properties.

2.
Nat Commun ; 12(1): 3267, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34075055

ABSTRACT

Two-dimensional (2D) materials offer unique opportunities in engineering the ultrafast spatiotemporal response of composite nanomechanical structures. In this work, we report on high frequency, high quality factor (Q) 2D acoustic cavities operating in the 50-600 GHz frequency (f) range with f × Q up to 1 × 1014. Monolayer steps and material interfaces expand cavity functionality, as demonstrated by building adjacent cavities that are isolated or strongly-coupled, as well as a frequency comb generator in MoS2/h-BN systems. Energy dissipation measurements in 2D cavities are compared with attenuation derived from phonon-phonon scattering rates calculated using a fully microscopic ab initio approach. Phonon lifetime calculations extended to low frequencies (<1 THz) and combined with sound propagation analysis in ultrathin plates provide a framework for designing acoustic cavities that approach their fundamental performance limit. These results provide a pathway for developing platforms employing phonon-based signal processing and for exploring the quantum nature of phonons.

3.
Micromachines (Basel) ; 11(10)2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33076523

ABSTRACT

We report on a developed micromachined silicon platform for the precise assembly of 2D multilayer Laue lenses (MLLs) for high-resolution X-ray microscopy. The platform is 10 × 10 mm2 and is fabricated on ~500 µm thick silicon wafers through multiple steps of photolithography and deep reactive-ion etching. The platform accommodates two linear MLLs in a pre-defined configuration with precise angular and lateral position control. In this work, we discuss the design and microfabrication of the platform, and characterization regarding MLLs assembly, position control, repeatability, and stability. The results demonstrate that a micromachined platform can be used for the assembly of a variety of MLLs with different dimensions and optical parameters. The angular misalignment of 2D MLLs is well controlled in the range of the designed accuracy, down to a few millidegrees. The separation distance between MLLs is adjustable from hundreds to more than one thousand micrometers. The use of the developed platform greatly simplifies the alignment procedure of the MLL optics and reduces the complexity of the X-ray microscope. It is a significant step forward for the development of monolithic 2D MLL nanofocusing optics for high-resolution X-ray microscopy.

4.
Opt Express ; 28(12): 17660-17671, 2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32679971

ABSTRACT

We report on the development of 2D integrated multilayer Laue lens (MLL) nanofocusing optics used for high-resolution x-ray microscopy. A Micro-Electro-Mechanical-Systems (MEMS) - based template has been designed and fabricated to accommodate two linear MLL optics in pre-aligned configuration. The orthogonality requirement between two MLLs has been satisfied to a better than 6 millidegrees level, and the separation along the x-ray beam direction was controlled on a micrometer scale. Developed planar 2D MLL structure has demonstrated astigmatism free point focus of ∼14 nm by ∼13 nm in horizontal and vertical directions, respectively, at 13.6 keV photon energy. Approaching 10 nm resolution with integrated 2D MLL optic is a significant step forward in applications of multilayer Laue lenses for high-resolution hard x-ray microscopy and their adoption by the general x-ray microscopy community.

5.
Nat Commun ; 11(1): 5, 2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31911592

ABSTRACT

Here we report how two-dimensional crystal (2DC) overlayers influence the recrystallization of relatively thick metal films and the subsequent synergetic benefits this provides for coupling surface plasmon-polaritons (SPPs) to photon emission in 2D semiconductors. We show that annealing 2DC/Au films on SiO2 results in a reverse epitaxial process where initially nanocrystalline Au films gain texture, crystallographically orient with the 2D crystal overlayer, and form an oriented porous metallic network (OPEN) structure in which the 2DC can suspend above or coat the inside of the metal pores. Both laser excitation and exciton recombination in the 2DC semiconductor launch propagating SPPs in the OPEN film. Energy in-/out- coupling occurs at metal pore sites, alleviating the need for dielectric spacers between the metal and 2DC layer. At low temperatures, single-photon emitters (SPEs) are present across an OPEN-WSe2 film, and we demonstrate remote SPP-mediated excitation of SPEs at a distance of 17 µm.

6.
Nano Lett ; 19(9): 6166-6172, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31389244

ABSTRACT

The interaction of quantum systems with mechanical resonators is of practical interest for applications in quantum information and sensing and also of fundamental interest as hybrid quantum systems. Achieving a large and tunable interaction strength is of great importance in this field as it enables controlled access to the quantum limit of motion and coherent interactions between different quantum systems. This has been challenging with solid state spins, where typically the coupling is weak and cannot be tuned. Here we use pairs of coupled quantum dots embedded within cantilevers to achieve a high coupling strength of the singlet-triplet spin system to mechanical motion through strain. Two methods of achieving strong, tunable coupling are demonstrated. The first is through different strain-induced energy shifts for the two QDs when the cantilever vibrates, resulting in changes to the exchange interaction. The second is through a laser-driven AC Stark shift that is sensitive to strain-induced shifts of the optical transitions. Both of these mechanisms can be tuned to zero with electrical bias or laser power, respectively, and give large spin-mechanical coupling strengths.

7.
Nat Mater ; 18(9): 963-969, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31285618

ABSTRACT

The quest for an integrated quantum optics platform has motivated the field of semiconductor quantum dot research for two decades. Demonstrations of quantum light sources, single photon switches, transistors and spin-photon interfaces have become very advanced. Yet the fundamental problem that every quantum dot is different prevents integration and scaling beyond a few quantum dots. Here, we address this challenge by patterning strain via local phase transitions to selectively tune individual quantum dots that are embedded in a photonic architecture. The patterning is implemented with in operando laser crystallization of a thin HfO2 film 'sheath' on the surface of a GaAs waveguide. Using this approach, we tune InAs quantum dot emission energies over the full inhomogeneous distribution with a step size down to the homogeneous linewidth and a spatial resolution better than 1 µm. Using these capabilities, we tune multiple quantum dots into resonance within the same waveguide and demonstrate a quantum interaction via superradiant emission from three quantum dots.

8.
ACS Nano ; 11(5): 4745-4752, 2017 05 23.
Article in English | MEDLINE | ID: mdl-28463478

ABSTRACT

Using graphene nanomechanical resonators we demonstrate the extent to which the mechanical properties of multilayer graphene films are controllable, in real time, through introduction and rearrangement of defects. We show both static and re-entrant (cyclical) changes in the tensile stress using a combination of ion implantation, chemical functionalization, and thermal treatment. While the dramatic increase in static tensile stress achievable through laser annealing can be of importance for various MEMS applications, we view the direct observation of a time-variable stress as even more significant. We find that defect-rich films exhibit a slow relaxation component of the tensile stress that remains in the resonator long after the laser exposure is finished (trelax ≈ 100 s ≫ tcooling), analogous to a wind-up toy. We attribute this persistent component of the time-variable stress to a set of metastable, multivacancy structures formed during the laser anneal. Our results indicate that significant stress fields generated by multivacancies, in combination with their finite lifetime, could make them a powerful and flexible tool in nanomechanics.

9.
Sci Rep ; 5: 15908, 2015 Oct 29.
Article in English | MEDLINE | ID: mdl-26511284

ABSTRACT

Suspended single-walled carbon nanotubes (SWCNTs) offer unique functionalities for electronic and electromechanical systems. Due to their outstanding flexible nature, suspended SWCNT architectures have great potential for integration into flexible electronic systems. However, current techniques for integrating SWCNT architectures with flexible substrates are largely absent, especially in a manner that is both scalable and well controlled. Here, we present a new nanostructured transfer paradigm to print scalable and well-defined suspended nano/microscale SWCNT networks on 3D patterned flexible substrates with micro- to nanoscale precision. The underlying printing/transfer mechanism, as well as the mechanical, electromechanical, and mechanical resonance properties of the suspended SWCNTs are characterized, including identifying metrics relevant for reliable and sensitive device structures. Our approach represents a fast, scalable and general method for building suspended nano/micro SWCNT architectures suitable for flexible sensing and actuation systems.

10.
Nano Lett ; 12(8): 4212-8, 2012 Aug 08.
Article in English | MEDLINE | ID: mdl-22764747

ABSTRACT

We report a method to introduce direct bonding between graphene platelets that enables the transformation of a multilayer chemically modified graphene (CMG) film from a "paper mache-like" structure into a stiff, high strength material. On the basis of chemical/defect manipulation and recrystallization, this technique allows wide-range engineering of mechanical properties (stiffness, strength, density, and built-in stress) in ultrathin CMG films. A dramatic increase in the Young's modulus (up to 800 GPa) and enhanced strength (sustainable stress ≥1 GPa) due to cross-linking, in combination with high tensile stress, produced high-performance (quality factor of 31,000 at room temperature) radio frequency nanomechanical resonators. The ability to fine-tune intraplatelet mechanical properties through chemical modification and to locally activate direct carbon-carbon bonding within carbon-based nanomaterials will transform these systems into true "materials-by-design" for nanomechanics.

11.
Nano Lett ; 11(10): 4304-8, 2011 Oct 12.
Article in English | MEDLINE | ID: mdl-21913676

ABSTRACT

We present the first nanomechanical resonators microfabricated in single-crystal diamond. Shell-type resonators only 70 nm thick, the thinnest single crystal diamond structures produced to date, demonstrate a high-quality factor (Q ≈ 1000 at room temperature, Q ≈ 20 000 at 10 K) at radio frequencies (50-600 MHz). Quality factor dependence on temperature and frequency suggests an extrinsic origin to the dominant dissipation mechanism and methods to further enhance resonator performance.

12.
Nano Lett ; 8(10): 3441-5, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18781807

ABSTRACT

We report a process to form large-area, few-monolayer graphene oxide films and then recover the outstanding mechanical properties found in graphene to fabricate high Young's modulus ( =185 GPa), low-density nanomechanical resonators. Wafer-scale films as thin as 4 nm are sufficiently robust that they can be delaminated intact and resuspended on a bed of pillars or field of holes. From these films, we demonstrate radio frequency resonators with quality factors (up to 4000) and figures of merit ( f x Q>10(11)) well exceeding those of pure graphene resonators reported to date. These films' ability to withstand high in-plane tension (up to 5 N/m) as well as their high Q-values reveals that film integrity is enhanced by platelet-platelet bonding unavailable in pure graphite.

SELECTION OF CITATIONS
SEARCH DETAIL
...