Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 13(5): e10072, 2023 May.
Article in English | MEDLINE | ID: mdl-37206686

ABSTRACT

Whitebark pine (Pinus albicaulis Engelm.) has experienced rapid population declines and is listed as threatened under the Endangered Species Act in the United States. Whitebark pine in the Sierra Nevada of California represents the southernmost end of the species' distribution and, like other portions of its range, faces threats from an introduced pathogen, native bark beetles, and a rapidly warming climate. Beyond these chronic stressors, there is also concern about how this species will respond to acute stressors, such as drought. We present patterns of stem growth from 766 large (average diameter at breast height >25 cm), disease-free whitebark pine across the Sierra Nevada before and during a recent period of drought. We contextualize growth patterns using population genomic diversity and structure from a subset of 327 trees. Sampled whitebark pine generally had positive to neutral stem growth trends from 1970 to 2011, which was positively correlated with minimum temperature and precipitation. Indices of stem growth during drought years (2012 to 2015) relative to a predrought interval were mostly positive to neutral at our sampled sites. Individual tree growth response phenotypes appeared to be linked to genotypic variation in climate-associated loci, suggesting that some genotypes can take better advantage of local climatic conditions than others. We speculate that reduced snowpack during the 2012 to 2015 drought years may have lengthened the growing season while retaining sufficient moisture to maintain growth at most study sites. Growth responses may differ under future warming, however, particularly if drought severity increases and modifies interactions with pests and pathogens.

2.
Tree Physiol ; 43(2): 210-220, 2023 02 04.
Article in English | MEDLINE | ID: mdl-36263988

ABSTRACT

Climate change is increasing the severity and duration of drought events experienced by forest ecosystems. Because water is essential for tree physiological processes, the ability of trees to survive prolonged droughts will largely depend on whether they have access to reliable water sources. While many woody plant species exhibit the ability to shift water sources between different depths of soil and rock water in response to changes in climate and water availability, it is unclear if Sierra Nevada conifers exhibit this plasticity. Here we analysed the δ18O and δ13C values of annual tree rings to determine the water-use patterns of large Sierra Nevada conifers during the 2012-16 California drought and 4 years before this drought event (2004-07). We analysed four species (Pinus jeffreyi Grev. & Balf. (Jeffrey pine), Pinus lambertiana Dougl. (sugar pine), Abies concolor (Gord. & Glend.) Lindl. Ex Hilderbr (white fir) and Calocedrus decurrens (Torr.) Florin (incense-cedar)) across a range of topographic positions to investigate differences in water-use patterns by species and position on the landscape. We found no significant differences in δ18O and δ13C values for the pre-drought and drought periods. This stability in δ18O values suggests that trees did not shift their water-use patterns in response to the 2012-16 drought. We did find species-specific differences in water-use patterns, with incense-cedar exhibiting more depleted δ18O values than all other species. We also found trends that suggest the water source used by a tree may depend on topographic and growing environment attributes such as topographic wetness and the surrounding basal area. Overall, our results suggest that the water source used by trees varies by the species and topographic position, but that Sierra Nevada conifers do not switch their water-use patterns in response to the drought. This lack of plasticity could make Sierra Nevada conifers particularly vulnerable to drought mortality as their historically reliable water sources begin to dry out with climate change.


Subject(s)
Pinus , Tracheophyta , Ecosystem , Water , Forests , Wood , Droughts , Pinus/physiology
3.
Glob Chang Biol ; 26(11): 6180-6189, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32810926

ABSTRACT

Ongoing climate change will alter the carbon carrying capacity of forests as they adjust to climatic extremes and changing disturbance regimes. In frequent-fire forests, increasing drought frequency and severity are already causing widespread tree mortality events, which can exacerbate the carbon debt that has developed as a result of fire exclusion. Forest management techniques that reduce tree density and surface fuels decrease the risk of high-severity wildfire and may also limit drought-induced mortality by reducing competition. We used a long-term thinning and burning experiment in a mixed-conifer forest to investigate the effects of the 2012-2015 California drought on forest carbon dynamics in each treatment, including the carbon emissions from a second-entry prescribed fire that followed the drought. We assessed differences in carbon stability and tree survival across treatments, expecting that both carbon stability and survival probability would increase with increasing treatment intensity (decreasing basal area). Additionally, we analyzed the effects of drought- mortality on second-entry burn emissions and compared emissions for the first- and second-entry burns. We found a non-linear relationship between treatment intensity and carbon stability, which was in part driven by varying relationships between individual tree growing space and survival across treatments. Drought mortality increased dead tree and surface fuel carbon in all treatments, which contributed to higher second-entry burn emissions for two of the three burn treatments when compared to the first burn. Our findings suggest that restoration treatments will not serve as a panacea for ongoing climate change and that the carbon debt of these forests will become increasingly unstable as the carbon carrying capacity adjusts to severe drought events. Managing the carbon debt with prescribed fire will help reduce the risk of additional mortality from wildfire, but at an increasing carbon cost for forest management.


Subject(s)
Fires , Wildfires , Carbon , Climate Change , Forests
4.
Ecol Appl ; 28(4): 1068-1080, 2018 06.
Article in English | MEDLINE | ID: mdl-29698575

ABSTRACT

Many studies have examined how fuels, topography, climate, and fire weather influence fire severity. Less is known about how different forest management practices influence fire severity in multi-owner landscapes, despite costly and controversial suppression of wildfires that do not acknowledge ownership boundaries. In 2013, the Douglas Complex burned over 19,000 ha of Oregon & California Railroad (O&C) lands in Southwestern Oregon, USA. O&C lands are composed of a checkerboard of private industrial and federal forestland (Bureau of Land Management, BLM) with contrasting management objectives, providing a unique experimental landscape to understand how different management practices influence wildfire severity. Leveraging Landsat based estimates of fire severity (Relative differenced Normalized Burn Ratio, RdNBR) and geospatial data on fire progression, weather, topography, pre-fire forest conditions, and land ownership, we asked (1) what is the relative importance of different variables driving fire severity, and (2) is intensive plantation forestry associated with higher fire severity? Using Random Forest ensemble machine learning, we found daily fire weather was the most important predictor of fire severity, followed by stand age and ownership, followed by topographic features. Estimates of pre-fire forest biomass were not an important predictor of fire severity. Adjusting for all other predictor variables in a general least squares model incorporating spatial autocorrelation, mean predicted RdNBR was higher on private industrial forests (RdNBR 521.85 ± 18.67 [mean ± SE]) vs. BLM forests (398.87 ± 18.23) with a much greater proportion of older forests. Our findings suggest intensive plantation forestry characterized by young forests and spatially homogenized fuels, rather than pre-fire biomass, were significant drivers of wildfire severity. This has implications for perceptions of wildfire risk, shared fire management responsibilities, and developing fire resilience for multiple objectives in multi-owner landscapes.


Subject(s)
Forestry , Weather , Wildfires , Oregon , Ownership
5.
For Ecol Manage ; 366: 193-207, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-27041818

ABSTRACT

Forest carbon (C) density varies tremendously across space due to the inherent heterogeneity of forest ecosystems. Variation of forest C density is especially pronounced in mountainous terrain, where environmental gradients are compressed and vary at multiple spatial scales. Additionally, the influence of environmental gradients may vary with forest age and developmental stage, an important consideration as forest landscapes often have a diversity of stand ages from past management and other disturbance agents. Quantifying forest C density and its underlying environmental determinants in mountain terrain has remained challenging because many available data sources lack the spatial grain and ecological resolution needed at both stand and landscape scales. The objective of this study was to determine if environmental factors influencing aboveground live carbon (ALC) density differed between young versus old forests. We integrated aerial light detection and ranging (lidar) data with 702 field plots to map forest ALC density at a grain of 25 m across the H.J. Andrews Experimental Forest, a 6369 ha watershed in the Cascade Mountains of Oregon, USA. We used linear regressions, random forest ensemble learning (RF) and sequential autoregressive modeling (SAR) to reveal how mapped forest ALC density was related to climate, topography, soils, and past disturbance history (timber harvesting and wildfires). ALC increased with stand age in young managed forests, with much greater variation of ALC in relation to years since wildfire in old unmanaged forests. Timber harvesting was the most important driver of ALC across the entire watershed, despite occurring on only 23% of the landscape. More variation in forest ALC density was explained in models of young managed forests than in models of old unmanaged forests. Besides stand age, ALC density in young managed forests was driven by factors influencing site productivity, whereas variation in ALC density in old unmanaged forests was also affected by finer scale topographic conditions associated with sheltered sites. Past wildfires only had a small influence on current ALC density, which may be a result of long times since fire and/or prevalence of non-stand replacing fire. Our results indicate that forest ALC density depends on a suite of multi-scale environmental drivers mediated by complex mountain topography, and that these relationships are dependent on stand age. The high and context-dependent spatial variability of forest ALC density has implications for quantifying forest carbon stores, establishing upper bounds of potential carbon sequestration, and scaling field data to landscape and regional scales.

SELECTION OF CITATIONS
SEARCH DETAIL
...