Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Synchrotron Radiat ; 30(Pt 6): 1168-1182, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37860937

ABSTRACT

The Femtosecond X-ray Experiments (FXE) instrument at the European X-ray Free-Electron Laser (EuXFEL) provides an optimized platform for investigations of ultrafast physical, chemical and biological processes. It operates in the energy range 4.7-20 keV accommodating flexible and versatile environments for a wide range of samples using diverse ultrafast X-ray spectroscopic, scattering and diffraction techniques. FXE is particularly suitable for experiments taking advantage of the sub-MHz repetition rates provided by the EuXFEL. In this paper a dedicated setup for studies on ultrafast biological and chemical dynamics in solution phase at sub-MHz rates at FXE is presented. Particular emphasis on the different liquid jet sample delivery options and their performance is given. Our portfolio of high-speed jets compatible with sub-MHz experiments includes cylindrical jets, gas dynamic virtual nozzles and flat jets. The capability to perform multi-color X-ray emission spectroscopy (XES) experiments is illustrated by a set of measurements using the dispersive X-ray spectrometer in von Hamos geometry. Static XES data collected using a multi-crystal scanning Johann-type spectrometer are also presented. A few examples of experimental results on ultrafast time-resolved X-ray emission spectroscopy and wide-angle X-ray scattering at sub-MHz pulse repetition rates are given.

2.
Struct Dyn ; 9(2): 024301, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35311000

ABSTRACT

We report the observation of photo-induced plasmon-phonon coupled modes in the group IV-VI semiconductor PbTe using ultrafast x-ray diffuse scattering at the Linac Coherent Light Source. We measure the near-zone-center excited-state dispersion of the heavily screened longitudinal optical (LO) phonon branch as extracted from differential changes in x-ray diffuse scattering intensity following above bandgap photoexcitation. We suggest that upon photoexcitation, the LO phonon-plasmon coupled (LOPC) modes themselves become coupled to longitudinal acoustic modes that drive electron band shifts via acoustic deformation potentials and possibly to low-energy single-particle excitations within the plasma and that these couplings give rise to displacement-correlations that oscillate in time with a period given effectively by the heavily screened LOPC frequency.

3.
J Synchrotron Radiat ; 27(Pt 3): 796-798, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32381783

ABSTRACT

The electron linear accelerators driving modern X-ray free-electron lasers can emit intense, tunable, quasi-monochromatic terahertz (THz) transients with peak electric fields of V Å-1 and peak magnetic fields in excess of 10 T when a purpose-built, compact, superconducting THz undulator is implemented. New research avenues such as X-ray movies of THz-driven mode-selective chemistry come into reach by making dual use of the ultra-short GeV electron bunches, possible by a rather minor extension of the infrastructure.

4.
Nat Commun ; 7: 12291, 2016 07 22.
Article in English | MEDLINE | ID: mdl-27447688

ABSTRACT

The interactions between electrons and lattice vibrations are fundamental to materials behaviour. In the case of group IV-VI, V and related materials, these interactions are strong, and the materials exist near electronic and structural phase transitions. The prototypical example is PbTe whose incipient ferroelectric behaviour has been recently associated with large phonon anharmonicity and thermoelectricity. Here we show that it is primarily electron-phonon coupling involving electron states near the band edges that leads to the ferroelectric instability in PbTe. Using a combination of nonequilibrium lattice dynamics measurements and first principles calculations, we find that photoexcitation reduces the Peierls-like electronic instability and reinforces the paraelectric state. This weakens the long-range forces along the cubic direction tied to resonant bonding and low lattice thermal conductivity. Our results demonstrate how free-electron-laser-based ultrafast X-ray scattering can be utilized to shed light on the microscopic mechanisms that determine materials properties.

5.
Nat Mater ; 11(11): 952-6, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23064498

ABSTRACT

The study of metal-insulator transitions (MITs) in crystalline solids is a subject of paramount importance, both from the fundamental point of view and for its relevance to the transport properties of materials. Recently, a MIT governed by disorder was observed in crystalline phase-change materials. Here we report on calculations employing density functional theory, which identify the microscopic mechanism that localizes the wavefunctions and is driving this transition. We show that, in the insulating phase, the electronic states responsible for charge transport are localized inside regions having large vacancy concentrations. The transition to the metallic state is driven by the dissolution of these vacancy clusters and the formation of ordered vacancy layers. These results provide important insights on controlling the wavefunction localization, which should help to develop conceptually new devices based on multiple resistance states.

SELECTION OF CITATIONS
SEARCH DETAIL
...