Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 368(1916): 1739-68, 2010 Apr 13.
Article in English | MEDLINE | ID: mdl-20211882

ABSTRACT

In inertial confinement fusion (ICF), the possibility of ignition or high energy gain is largely determined by our ability to control the Rayleigh-Taylor (RT) instability growth in the target. The exponentially amplified RT perturbation eigenmodes are formed from all sources of the target and radiation non-uniformity in a process called seeding. This process involves a variety of physical mechanisms that are somewhat similar to the classical Richtmyer-Meshkov (RM) instability (in particular, most of them are active in the absence of acceleration), but differ from it in many ways. In the last decade, radiographic diagnostic techniques have been developed that made direct observations of the RM-type effects in the ICF-relevant conditions possible. New experiments stimulated the advancement of the theory of the RM-type processes. The progress in the experimental and theoretical studies of such phenomena as ablative RM instability, re-shock of the RM-unstable interface, feedout and perturbation development associated with impulsive loading is reviewed.

2.
Phys Rev Lett ; 103(8): 085002, 2009 Aug 21.
Article in English | MEDLINE | ID: mdl-19792732

ABSTRACT

Experimental study of a shock-decelerated ablation front is reported. A planar solid plastic target is accelerated by a laser across a vacuum gap and collides with a lower-density plastic foam layer. While the target is accelerated, a fast Rayleigh-Taylor (RT) growth of the seeded single-mode perturbation at the ablation front is observed. After the collision, the velocity of the ablation front is seen to remain constant. The reshock quenches the RT growth but does not trigger any Richtmyer-Meshkov growth at the ablation front, which is shown to be consistent with both theory and simulations.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(4 Pt 2): 047303, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16711960

ABSTRACT

A study--based on simulations and experiments as well as analytical derivations--of the internal structure of the fragmented ("mixed") state induced by the Rayleigh-Taylor instability at the interface between two fluids is presented. The distribution of sizes and the energy spectrum in the fragmented state are derived from the symmetries exhibited by the data and by dimensional analysis.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(4 Pt 2): 046306, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16383532

ABSTRACT

An expansion wave is produced when an incident shock wave interacts with a surface separating a fluid from a vacuum. Such an interaction starts the feedout process that transfers perturbations from the rippled inner (rear) to the outer (front) surface of a target in inertial confinement fusion. Being essentially a standing sonic wave superimposed on a centered expansion wave, a rippled expansion wave in an ideal gas, like a rippled shock wave, typically produces decaying oscillations of all fluid variables. Its behavior, however, is different at large and small values of the adiabatic exponent gamma. At gamma > 3, the mass modulation amplitude delta(m) in a rippled expansion wave exhibits a power-law growth with time alpha(t)beta, where beta = (gamma - 3)/(gamma - 1). This is the only example of a hydrodynamic instability whose law of growth, dependent on the equation of state, is expressed in a closed analytical form. The growth is shown to be driven by a physical mechanism similar to that of a classical Richtmyer-Meshkov instability. In the opposite extreme gamma - 1 << 1, delta(m) exhibits oscillatory growth, approximately linear with time, until it reaches its peak value approximately (gamma - 1)(-1/2), and then starts to decrease. The mechanism driving the growth is the same as that of Vishniac's instability of a blast wave in a gas with low . Exact analytical expressions for the growth rates are derived for both cases and favorably compared to hydrodynamic simulation results.

SELECTION OF CITATIONS
SEARCH DETAIL
...