Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Struct Biol ; 11: 25, 2011 May 16.
Article in English | MEDLINE | ID: mdl-21575181

ABSTRACT

BACKGROUND: DraD invasin encoded by the dra operon possesses a classical structure characteristic to fimbrial subunits of the chaperone/usher type. The Ig-fold of the DraD possesses two major characteristics distinguishing it from the family of fimbrial subunits: 1) a distortion of the ß-barrel structure in the region of the acceptor cleft, demonstrated by a disturbance of the main-chain hydrogen bonds network, and 2) an unusually located disulfide bond connecting B and F strands - the localization exclusively observed in the subfamily of DraD/AfaD-type subunits. RESULTS: To evaluate the influence of the DraD-sc specific structural features on its stability and mechanism of thermal denaturation, a series of DSC and FT-IR denaturation experiments were performed giving following conclusions. 1) The DraD-sc is characterized by a low stability (standard Gibbs free energy and enthalpy of unfolding of 18.4 ±1.4 kJ mol(-1) and 131 ±25 kJ mol(-1), respectively) that contrasts strongly with almost infinite stability of the described previously DraE-sc fimbrial protein. 2) The DraD-sc unfolds thermally according to the two state equilibrium model, in contrast to the irreversible kinetically controlled transition of the DraE-sc. 3) The DraD specific disulfide bond is crucial at the folding stage and has little stability effect in the mature protein. CONCLUSIONS: Data published so far emphasize unique biological properties of the DraD invasin as fimbrial subunit: a chaperone independent folding, an usher independent surface localization and the possibility to exist in two forms: as unbound subunits and as loosely bound at fimbrial tip.Presented calorimetric and FT-IR stability data combined with structural correlations has underlined that the DraD invasin is also characterized by unique physicochemical and structural attributes in the context of its belonging to the family of fimbrial subunits.


Subject(s)
Adhesins, Escherichia coli/chemistry , Escherichia coli Proteins/chemistry , Fimbriae Proteins/chemistry , Molecular Chaperones/chemistry , Calorimetry, Differential Scanning , Disulfides , Escherichia coli/metabolism , Fimbriae, Bacterial/metabolism , Protein Denaturation , Protein Folding , Spectroscopy, Fourier Transform Infrared
2.
Pol J Microbiol ; 60(4): 279-85, 2011.
Article in English | MEDLINE | ID: mdl-22390061

ABSTRACT

Urinary tract infections are a very serious health and economic problem affecting millions of people each year worldwide. The most common etiologic agent of this type of bacterial infections, involving the upper and lower urinary tract, are E. coli strains representing approximately 80% of cases. Uropathogenic E. coli strains produce several urovirulence factors which can be divided into two main types, surface virulence factors and exported virulence factors. Surface-exposed structures include mainly extracellular adhesive organelles such as fimbriae/pili necessary in adhesion, invasion, biofilm formation and cytokine induction. Among the surface-exposed polymeric adhesive structures there are three most invasive groups, type 1 pili, type P pili and Dr family of adhesins which are bioassembled via the conserved, among Gram-negative bacteria, chaperone-usher secretion system. Type 1 and P-piliated E. coli cause cystitis and pyelonephritis. The Dr family of adhesins recognizing DAF receptor is responsible for cystitis, pyelonephritis (especially in pregnant women) and diarrhoea (in infants). In addition, Dr-positive E. coli strains carry the risk of recurrent urinary tract infections. Pyelonephritis in pregnant women leads to a series of complications such as bacteremia, urosepsis, acute respiratory distress syndrome and even death. In the era of increasing drug resistance of bacteria, the development of vaccines, drugs termed pilicides and inhibitors of adhesion may be a promising tool in the fight against urogenital infections.


Subject(s)
Escherichia coli Infections/microbiology , Urinary Tract Infections/microbiology , Uropathogenic Escherichia coli/pathogenicity , Escherichia coli Infections/therapy , Fimbriae, Bacterial , Humans , Urinary Tract Infections/therapy , Virulence Factors
3.
Pol J Microbiol ; 58(3): 223-9, 2009.
Article in English | MEDLINE | ID: mdl-19899615

ABSTRACT

Urinary tract infections are the most common health problem affecting millions of people each year. Uropathogenic Escherichia coli (UPEC) strains are the major factor causing lower and upper urinary tract infections. UPEC produce several virulence factors among which are surface exposed adhesive organelldes (pili/fimbriae) responsible for colonization, invasion and amplification within uroepithelial cells. The virulence of the uropathogenic E. coli Dr IH11128 is associated with Dr fimbriae belonging to the Dr family of adhesins (associated with diarrhea and urinary tract infections) and a DraD protein capping the linear fiber at the bacterial cell surface. In this study we revealed that biofilm development can be another urovirulence determinant allowing pathogenic E. coli Dr+ to survive within the urinary tract. E. coli strains were grown in rich or minimal media, allowed to adhere to abiotic surfaces and analyzed microscopically by staining of cells with cristal violet. We found that both Dr fimbriae and DraD, exposed at the cell surface in two forms, fimbria-associated or fimbria non-associated, (DraE+/DraD+, DraE+/DraD- or DraE-/DraD+ E. coli strains) are required for biofilm formation. Additionally, we demonstrated the biofilm formation capacity of E. coli strains deficient in the surface secretion or production of the DraE adhesin.


Subject(s)
Escherichia coli Infections/microbiology , Escherichia coli/classification , Escherichia coli/physiology , Urinary Tract Infections/microbiology , Virulence Factors/metabolism , Adhesins, Escherichia coli , Bacteriological Techniques , Biofilms
SELECTION OF CITATIONS
SEARCH DETAIL
...