Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 202: 116338, 2024 May.
Article in English | MEDLINE | ID: mdl-38640763

ABSTRACT

Comprehensive methodologies for monitoring microplastics (MPs) in the ocean are critical for accurately assessing abundances across a broad size spectrum, and to document distributions, sources, sinks, temporal trends, and exposure risks for organisms. Discrete 0.5-L water samples from the northeastern-coast of Venezuela (NECV), Pacific-Arctic Ocean (PAO), and Gulf Stream Current (GSC) were analyzed by Raman microspectroscopy to detect MPs not captured by net-tow surveys. Equivalent spherical diameters (ESD) of most MPs were <5 µm, accounting for 68, 83, 86 % of total inventories in NECV, GSC, PAO samples. We did not observe a single MP particle >53 µm ESD. Abundances of MPs in the 0.5-200 µm size fraction were 5-6 orders of magnitude higher than previous surveys that were almost exclusively based on net tow collections of MPs > 300 µm ESD. Abundances of MPs in NECV samples were ~10-fold higher than those from PAO and GSC. The most abundant polymers were polypropylene (PP), polystyrene (PS) and polyethylene terephthalate (PET), consistent with composition of plastic waste generated globally.


Subject(s)
Environmental Monitoring , Microplastics , Water Pollutants, Chemical , Microplastics/analysis , Water Pollutants, Chemical/analysis , Arctic Regions , Caribbean Region , Plastics/analysis , Oceans and Seas
2.
Front Microbiol ; 12: 686287, 2021.
Article in English | MEDLINE | ID: mdl-34795644

ABSTRACT

Emiliania huxleyi is a cosmopolitan member of the marine phytoplankton. This species' capacities for carbon sequestration and sulfur mobilization make it a key player in oceanic biogeochemical cycles that influence climate on a planetary scale. Seasonal E. huxleyi blooms are abruptly terminated by viral epidemics caused by a clade of large DNA viruses collectively known as coccolithoviruses (EhVs). EhVs thereby mediate a significant part of material and energy fluxes associated with E. huxleyi population dynamics. In this study, we use spontaneous Raman microspectroscopy to perform label-free and non-invasive measurements of the macromolecular composition of individual virions and E. huxleyi host cells. Our novel autofluorescence suppression protocol enabled spectroscopic visualization of evolving macromolecular redistributions in individual E. huxleyi cells at different stages of EhV infection. Material transfer from E. huxleyi hosts to single EhV-163 virions was confirmed by combining stable isotope probing (SIP) experiments with Raman microspectroscopy. Inheritance of the host cells' 13C-enriched isotopic signature was quantified based on red shifts of Raman peaks characteristic of phenylalanine's phenyl ring. Two-dimensional Raman mapping of EhV-infected E. huxleyi cells revealed that the compact region producing an intense Raman DNA signal (i.e., the nucleus) in healthy E. huxleyi cells becomes diffuse during the first hours of infection. Raman DNA emissions integrated throughout individual cells decreased during the infection cycle. Our observations are consistent with EhV-163 degrading the host's nuclear DNA, scavenging released nucleotides for its own genome replication, and shedding newly-produced virions prior to host lysis via budding.

3.
Appl Environ Microbiol ; 87(22): e0146021, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34495689

ABSTRACT

The suitability of stable isotope probing (SIP) and Raman microspectroscopy to measure growth rates of heterotrophic bacteria at the single-cell level was evaluated. Label assimilation into Escherichia coli biomass during growth on a complex 13C-labeled carbon source was monitored in time course experiments. 13C incorporation into various biomolecules was measured by spectral "red shifts" of Raman-scattered emissions. The 13C- and 12C-isotopologues of the amino acid phenylalanine (Phe) proved to be quantitatively accurate reporter molecules of cellular isotopic fractional abundances (fcell). Values of fcell determined by Raman microspectroscopy and independently by isotope ratio mass spectrometry (IRMS) over a range of isotopic enrichments were statistically indistinguishable. Progressive labeling of Phe in E. coli cells among a range of 13C/12C organic substrate admixtures occurred predictably through time. The relative isotopologue abundances of Phe determined by Raman spectral analysis enabled the accurate calculation of bacterial growth rates as confirmed independently by optical density (OD) measurements. The results demonstrate that combining SIP and Raman microspectroscopy can be a powerful tool for studying bacterial growth at the single-cell level on defined or complex organic 13C carbon sources, even in mixed microbial assemblages. IMPORTANCE Population growth dynamics and individual cell growth rates are the ultimate expressions of a microorganism's fitness under its environmental conditions, whether natural or engineered. Natural habitats and many industrial settings harbor complex microbial assemblages. Their heterogeneity in growth responses to existing and changing conditions is often difficult to grasp by standard methodologies. In this proof-of-concept study, we tested whether Raman microspectroscopy can reliably quantify the assimilation of isotopically labeled nutrients into E. coli cells and enable the determination of individual growth rates among heterotrophic bacteria. Raman-derived growth rate estimates were statistically indistinguishable from those derived by standard optical density measurements of the same cultures. Raman microspectroscopy can also be combined with methods for phylogenetic identification. We report the development of Raman-based techniques that enable researchers to directly link genetic identity to functional traits and rate measurements of single cells within mixed microbial assemblages, currently a major technical challenge in microbiological research.


Subject(s)
Escherichia coli , Isotope Labeling , Spectrum Analysis, Raman , Carbon , Escherichia coli/growth & development , Phylogeny , Proof of Concept Study
4.
Sci Rep ; 9(1): 15785, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31673106

ABSTRACT

The near exponential proliferation of published Raman microspectroscopic applications over the last decade bears witness to the strengths and versatility of this technology. However, laser-induced fluorescence often severely impedes its application to biological samples. Here we report a new approach for near complete elimination of laser-induced background fluorescence in highly pigmented biological specimens (e.g., microalgae) enabling interrogation by Raman microspectroscopy. Our simple chemiphotobleaching method combines mild hydrogen peroxide oxidation with broad spectrum visible light irradiation of the entire specimen. This treatment permits observing intracellular distributions of macromolecular pools, isotopic tracers, and even viral propagation within cells previously not amenable to Raman microspectroscopic examination. Our approach demonstrates the potential for confocal Raman microspectroscopy becoming an indispensable tool to obtain spatially-resolved data on the chemical composition of highly fluorescent biological samples from individual cells to environmental samples.

5.
Front Microbiol ; 8: 1449, 2017.
Article in English | MEDLINE | ID: mdl-28824580

ABSTRACT

A new method to measure growth rates of individual photoautotrophic cells by combining stable isotope probing (SIP) and single-cell resonance Raman microspectrometry is introduced. This report explores optimal experimental design and the theoretical underpinnings for quantitative responses of Raman spectra to cellular isotopic composition. Resonance Raman spectra of isogenic cultures of the cyanobacterium, Synechococcus sp., grown in 13C-bicarbonate revealed linear covariance between wavenumber (cm-1) shifts in dominant carotenoid Raman peaks and a broad range of cellular 13C fractional isotopic abundance. Single-cell growth rates were calculated from spectra-derived isotopic content and empirical relationships. Growth rates among any 25 cells in a sample varied considerably; mean coefficient of variation, CV, was 29 ± 3% (σ/[Formula: see text]), of which only ~2% was propagated analytical error. Instantaneous population growth rates measured independently by in vivo fluorescence also varied daily (CV ≈ 53%) and were statistically indistinguishable from single-cell growth rates at all but the lowest levels of cell labeling. SCRR censuses of mixtures prepared from Synechococcus sp. and T. pseudonana (a diatom) populations with varying 13C-content and growth rates closely approximated predicted spectral responses and fractional labeling of cells added to the sample. This approach enables direct microspectrometric interrogation of isotopically- and phylogenetically-labeled cells and detects as little as 3% changes in cellular fractional labeling. This is the first description of a non-destructive technique to measure single-cell photoautotrophic growth rates based on Raman spectroscopy and well-constrained assumptions, while requiring few ancillary measurements.

6.
ACS Appl Mater Interfaces ; 8(50): 34280-34294, 2016 Dec 21.
Article in English | MEDLINE | ID: mdl-27936537

ABSTRACT

Multiwalled carbon nanotubes (MWNTs) represent a promising support medium for electrocatalysts, especially Pt nanoparticles (NPs). The advantages of using MWNTs include their large surface area, high conductivity, as well as long-term stability. Surface functionalization of MWNTs with various terminal groups, such as -COOH, -SH, and -NH2, allows for rational electronic tuning of catalyst-support interactions. However, several issues still need to be addressed for such systems. First, over the course of an electrochemical run, catalyst durability can decrease, due in part to metal NP dissolution, a process facilitated by the inherently high surface defect concentration within the support. Second, the covalent functionalization treatment of MWNTs adopted by most groups tends to lead to a loss of structural integrity of the nanotubes (NTs). To mitigate for all of these issues, we have utilized two different attachment approaches (i.e., covalent versus noncovalent) to functionalize the outer walls of pristine MWNTs and compared the catalytic performance of as-deposited ultrathin (<2 nm) 1D Pt nanowires with that of conventional Pt NPs toward the oxygen reduction reaction (ORR). Our results demonstrated that the electrochemical activity of Pt nanostructures immobilized onto functionalized carbon nanotube (CNT) supports could be dramatically improved by using ultrathin Pt nanowires (instead of NPs) with noncovalently (as opposed to covalently) functionalized CNT supports. Spectroscopic evidence corroborated the definitive presence of charge transfer between the metal catalysts and the underlying NT support, whose direction and magnitude are a direct function of (i) the terminal chemistry as well as (ii) the attachment methodology, both of which simultaneously impact upon the observed electrocatalytic performance. Specifically, the use of a noncovalent π-π stacking method coupled with a -COOH terminal moiety yielded the highest performance results, reported to date, for any similar system consisting of Pt (commercial NPs or otherwise) deposited onto carbon-based supports, a finding of broader interest toward the fabrication of high-performing electrocatalysts in general.

7.
Chem Res Toxicol ; 25(10): 2103-11, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22928555

ABSTRACT

Cellular respiration and ionizing radiation generate 5',8-cyclo-2'-deoxyribonucleosides, a special type of DNA damage that involves two modifications in the same nucleotide. These lesions evade the action of base excision glycosylases, and their removal is a function of the nucleotide excision repair pathway. Diastereomeric 5',8-cyclo-2'-deoxyadenosine blocks mammalian DNA replication, diminishes the levels of DNA transcription, and induces transcriptional mutagenesis. Using solution state NMR spectroscopy and restrained molecular dynamics simulations, we have determined the structure of an undecameric DNA duplex having a centrally located (5'S)-5',8-cyclo-2'-deoxyadenosine residue paired to T. The damaged duplex structure is a right-handed helix having Watson-Crick base-pair alignments throughout, and 2-deoxyribose puckers within the B-form conformation. Only small structural perturbations are observed at the lesion-containing and 5'-flanking base pair. The 2-deoxyribose of the damaged nucleotide adopts the O4'-exo conformation, and the S-cdA·T base pair is propeller twisted. The 5'-lesion-flanking base is tilted forming a significantly buckled base pair with its partner guanine. Analysis of UV-melting curves indicates mild thermal and thermodynamic destabilization on the damaged duplex. The S-cdA·T duplex structure shows many similarities to and some intriguing differences from the recently reported structure of an S-cdG·dC duplex³¹ that suggest different lesion site dynamics.


Subject(s)
DNA Repair , DNA/chemistry , Deoxyadenosines/chemistry , DNA/genetics , DNA Damage , Deoxyadenosines/genetics , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Nucleic Acid Conformation , Nucleic Acid Denaturation , Oxidation-Reduction
8.
Chem Res Toxicol ; 25(11): 2423-31, 2012 Nov 19.
Article in English | MEDLINE | ID: mdl-22897814

ABSTRACT

The addition of hydroxyl radicals to the C8 position of guanine can lead to the formation of a 2,6-diamino-4-hydroxy-5-formamido-2'-deoxypyrimidine (Fapy-dG) lesion, whose endogenous levels in cellular DNA rival those of 8-oxo-7,8-dihydroxy-2'-deoxyguanosine. Despite its prevalence, the structure of duplex DNA containing Fapy-dG is unknown. We have prepared an undecameric duplex containing a centrally located ß-cFapy-dG residue paired to dC and determined its solution structure by high-resolution NMR spectroscopy and restrained molecular dynamic simulations. The damaged duplex adopts a right-handed helical structure with all residues in an anti conformation, forming Watson-Crick base pair alignments, and 2-deoxyribose conformations in the C2'-endo/C1'-exo range. The formamido group of Fapy rotates out of the pyrimidine plane and is present in the Z and E configurations that equilibrate with an approximate 2:1 population ratio. The two isomeric duplexes show similar lesion-induced deviations from a canonical B-from DNA conformation that are minor and limited to the central three-base-pair segment of the duplex, affecting the stacking interactions with the 5-lesion-neighboring residue. We discuss the implications of our observations for translesion synthesis during DNA replication and the recognition of Fapy-dG by DNA glycosylases.


Subject(s)
DNA/chemistry , Deoxyguanosine/chemistry , Models, Molecular , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Nucleic Acid Conformation , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL
...