Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Soc Mass Spectrom ; 35(7): 1413-1421, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38804709

ABSTRACT

The 2018 Farm Bill defines marijuana as Cannabis sativa L. or any derivative thereof that contains greater than 0.3% Δ9-tetrahydrocannabinol (Δ9-THC) on a dry weight basis. The main cannabinoids present in Cannabis sativa L., Δ9-THC and cannabidiol (CBD), are structural isomers that cannot be differentiated using direct mass spectrometry with soft ionization techniques alone. Due to the classification of marijuana as a Schedule I controlled substance, the differentiation of Δ9-THC and CBD is crucial within the seized drug community. This study explores the use of Ag-ligand ion complexation and electrospray ionization tandem mass spectrometry (ESI-MS/MS) for the differentiation of Δ9-THC and CBD using six different Ag complexes. Differences between the binding affinities of Δ9-THC and CBD for [Ag(PPh3)(OTf)]2 lead to the formation of unique product ions at m/z 421/423, m/z 353/355, and m/z 231 for CBD, enabling the differentiation of CBD from Δ9-THC. When applied to the analysis of known Δ9-THC:CBD mixture ratios, the developed [Ag(PPh3)(OTf)]2 ion complexation method was able to differentiate Δ9-THC-rich and CBD-rich samples based on the average abundance of the product ions at m/z 421/423. The developed approach was then applied to methanolic extracts of 20 authentic cannabis samples with known Δ9-THC and CBD compositions, resulting in a 95% correct classification rate. Even though the developed Ag-ligand ion complexation method was only demonstrated for the qualitative differentiation of Δ9-THC-rich and CBD-rich cannabis, this study establishes a foundation for the use of Ag-ligand ion complexation that is essential for future quantitative approaches.


Subject(s)
Cannabidiol , Dronabinol , Silver , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Dronabinol/chemistry , Dronabinol/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Silver/chemistry , Tandem Mass Spectrometry/methods , Cannabidiol/chemistry , Cannabidiol/analysis , Ligands , Cannabis/chemistry , Ions/chemistry
2.
Inorg Chem ; 62(22): 8505-8518, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37216471

ABSTRACT

The mononuclear cobalt hydride complex [HCo(triphos)(PMe3)], in which triphos = PhP(CH2CH2PPh2)2, was synthesized and characterized by X-ray crystallography and by 1H and 31P NMR spectroscopy. The geometry of the compound is a distorted trigonal bipyramid in which the axial positions are occupied by the hydride and the central phosphorus atom of the triphos ligand, while the PMe3 and terminal triphos donor atoms occupy the equatorial positions. Protonation of [HCo(triphos)(PMe3)] generates H2 and the Co(I) cation, [Co(triphos)(PMe3)]+, and this reaction is reversible under an atmosphere of H2 when the proton source is weakly acidic. The thermodynamic hydricity of HCo(triphos)(PMe3) was determined to be 40.3 kcal/mol in MeCN from measurements of these equilibria. The reactivity of the hydride is, therefore, well suited to CO2 hydrogenation catalysis. Density functional theory (DFT) calculations were performed to evaluate the structures and hydricities of a series of analogous cobalt(triphosphine)(monophosphine) hydrides where the phosphine substituents are systematically changed from Ph to Me. The calculated hydricities range from 38.5 to 47.7 kcal/mol. Surprisingly, the hydricities of the complexes are generally insensitive to substitution at the triphosphine ligand, as a result of competing structural and electronic trends. The DFT-calculated geometries of the [Co(triphos)(PMe3)]+ cations are more square planar when the triphosphine ligand possesses bulkier phenyl groups and more tetrahedrally distorted when the triphosphine ligand has smaller methyl substituents, reversing the trend observed for [M(diphosphine)2]+ cations. More distorted structures are associated with an increase in ΔGH-°, and this structural trend counteracts the electronic effect in which methyl substitution at the triphosphine is expected to yield smaller ΔGH-° values. However, the steric influence of the monophosphine follows the normal trend that phenyl substituents give more distorted structures and increased ΔGH-° values.

3.
J Phys Chem A ; 125(30): 6600-6610, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34297558

ABSTRACT

The catalyzed hydrogenation of CO2 to formate via a triphosphine-ligated Cu(I) was studied computationally at the density functional theory level in the presence of a self-consistent reaction field. Of the four functionals benchmarked, M06 was generally in the best agreement with the available experimentally estimated values. Two bases, DBU and TBD, were studied in the context of two proposed mechanisms in the MeCN solvent. Activation of H2 was explored by using LCu(DBU)+ to form LCuH. Dissociation of a ligand arm results in higher barriers to form the key hydride complex, LCuH. The preferred mechanism passes through a transition state, where the H2 has one H atom interacting with the copper center and the other H atom interacting with the N atom of the base, similar to H2 insertion into a frustrated Lewis pair. There is no significant difference between the choice of a base, DBU or TBD, with respect to the proposed mechanisms. We propose that the experimentally observed differences between DBU and TBD reactivities for this mechanism are due to off-pathway changes.

4.
J Am Chem Soc ; 138(31): 9968-77, 2016 08 10.
Article in English | MEDLINE | ID: mdl-27434540

ABSTRACT

The copper(I) triphosphine complex LCu(MeCN)PF6 (L = 1,1,1-tris(diphenylphosphinomethyl)ethane), which we recently demonstrated is an active catalyst precursor for hydrogenation of CO2 to formate, reacts with H2 in the presence of a base to form a cationic dicopper hydride, [(LCu)2H]PF6. [(LCu)2H](+) is also an active precursor for catalytic CO2 hydrogenation, with equivalent activity to that of LCu(MeCN)(+), and therefore may be a relevant catalytic intermediate. The thermodynamic hydricity of [(LCu)2H](+) was determined to be 41.0 kcal/mol by measuring the equilibrium constant for this reaction using three different bases. [(LCu)2H](+) and the previously reported dimer (LCuH)2 can be synthesized by the reaction of LCu(MeCN)(+) with 0.5 and 1 equiv of KB(O(i)Pr)3H, respectively. The solid-state structure of [(LCu)2H](+) shows threefold symmetry about a linear Cu-H-Cu axis and significant steric strain imposed by bringing two LCu(+) units together around the small hydride ligand. [(LCu)2H](+) reacts stoichiometrically with CO2 to generate the formate complex LCuO2CH and the solvento complex LCu(MeCN)(+). The rate of the stoichiometric reaction between [(LCu)2H](+) and CO2 is dramatically increased in the presence of bases that coordinate strongly to the copper center, e.g. DBU and TMG. In the absence of CO2, the addition of a large excess of DBU to [(LCu)2H](+) results in an equilibrium that forms LCu(DBU)(+) and also presumably the mononuclear hydride LCuH, which is not directly observed. Due to the significantly enhanced CO2 reactivity of [(LCu)2H](+) under these catalytically relevant conditions, LCuH is proposed to be the catalytically active metal hydride.

5.
Dalton Trans ; 45(24): 10017-23, 2016 Jun 14.
Article in English | MEDLINE | ID: mdl-27071366

ABSTRACT

The thermodynamic hydricity of a metal hydride can vary considerably between solvents. This parameter can be used to determine the favourability of a hydride-transfer reaction, such as the reaction between a metal hydride and CO2 to produce formate. Because the hydricities of these species do not vary consistently between solvents, reactions that are thermodynamically unfavourable in one solvent can be favourable in others. The hydricity of a water-soluble, bis-phosphine nickel hydride complex was compared to the hydricity of formate in water and in acetonitrile. Formate is a better hydride donor than [HNi(dmpe)2](+) by 7 kcal mol(-1) in acetonitrile, and no hydride transfer from [HNi(dmpe)2](+) to CO2 occurs in this solvent. The hydricity of [HNi(dmpe)2](+) is greatly improved in water relative to acetonitrile, in that reduction of CO2 to formate by [HNi(dmpe)2](+) was found to be thermodynamically downhill by 8 kcal mol(-1). Catalysis for the hydrogenation of CO2 was pursued, but the regeneration of [HNi(dmpe)2] under catalytic conditions was unfavourable. However, the present results demonstrate that the solvent dependence of thermodynamic parameters such as hydricity and acidity can be exploited in order to produce systems with balanced or favourable overall thermodynamics. This approach should be advantageous for the design of future water-soluble catalysts.

6.
Inorg Chem ; 52(16): 9216-28, 2013 Aug 19.
Article in English | MEDLINE | ID: mdl-23902538

ABSTRACT

Cobalt-cobalt and iron-cobalt bonds are investigated in coordination complexes with formally mixed-valent [M2](3+) cores. The trigonal dicobalt tris(diphenylformamidinate) compound, Co2(DPhF)3, which was previously reported by Cotton, Murillo, and co-workers (Inorg. Chim. Acta 1996, 249, 9), is shown to have an energetically isolated, high-spin sextet ground-state by magnetic susceptibility and electron paramagnetic resonance (EPR) spectroscopy. A new tris(amidinato)amine ligand platform is introduced. By tethering three amidinate donors to an apical amine, this platform offers two distinct metal-binding sites. Using the phenyl-substituted variant (abbreviated as L(Ph)), the isolation of a dicobalt homobimetallic and an iron-cobalt heterobimetallic are demonstrated. The new [Co2](3+) and [FeCo](3+) cores have high-spin sextet and septet ground states, respectively. Their solid-state structures reveal short metal-metal bond distances of 2.29 Å for Co-Co and 2.18 Å for Fe-Co; the latter is the shortest distance for an iron-cobalt bond to date. To assign the positions of iron and cobalt atoms as well as to determine if Fe/Co mixing is occurring, X-ray anomalous scattering experiments were performed, spanning the Fe and Co absorption energies. These studies show only a minor amount of metal-site mixing in this complex, and that FeCoL(Ph) is more precisely described as (Fe0.94(1)Co0.06(1))(Co0.95(1)Fe0.05(1))L(Ph). The iron-cobalt heterobimetallic has been further characterized by Mössbauer spectroscopy. Its isomer shift of 0.65 mm/s and quadrupole splitting of 0.64 mm/s are comparable to the related diiron complex, Fe2(DPhF)3. On the basis of spectroscopic data and theoretical calculations, it is proposed that the formal [M2](3+) cores are fully delocalized.


Subject(s)
Cobalt/chemistry , Organometallic Compounds/chemistry , Formamides/chemistry , Models, Molecular , Molecular Structure , Organometallic Compounds/chemical synthesis , Quantum Theory
7.
Inorg Chem ; 51(1): 728-36, 2012 Jan 02.
Article in English | MEDLINE | ID: mdl-22148181

ABSTRACT

The nature of the iron-iron bond in the mixed-valent diiron tris(diphenylforamidinate) complex Fe(2)(DPhF)(3), which was first reported by Cotton, Murillo et al. (Inorg. Chim. Acta 1994, 219, 7-10), has been examined using additional spectroscopic and theoretical methods. It is shown that the coupling between the two iron centers is strongly ferromagnetic, giving rise to an octet spin ground state. On the basis of Mössbauer spectroscopy, the two iron centers, formally mixed-valent Fe(II)Fe(I), are completely equivalent with an isomer shift δ = 0.65 mm s(-1) and quadrupole splitting ΔE(Q) = +0.32 mm s(-1). A large, positive zero-field splitting D(7/2) = 8.2 cm(-1) has been determined from magnetic susceptibility measurements. Multiconfigurational quantum studies of the complete molecule Fe(2)(DPhF)(3) found one dominant configuration (σ)(2)(π)(4)(π*)(2)(σ*)(1)(δ)(2)(δ*)(2), which accounts for 73% of the ground-state wave function. By considering all the configurations, an estimated metal-metal bond order of 1.15 has been calculated. Finally, Fe(2)(DPhF)(3) exhibits weak electronic absorptions in the visible and near-infrared regions, which are assigned as d-d transitions from the doubly occupied metal-metal π molecular orbital to half-occupied π*, δ, and δ* orbitals.


Subject(s)
Iron Compounds/chemistry , Electrons , Magnetic Resonance Spectroscopy , Models, Molecular , Quantum Theory , Spectroscopy, Mossbauer
SELECTION OF CITATIONS
SEARCH DETAIL
...