Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38187634

ABSTRACT

Recent studies have identified over one hundred high-confidence (hc) autism spectrum disorder (ASD) genes. Systems biological and functional analyses on smaller subsets of these genes have consistently implicated excitatory neurogenesis. However, the extent to which the broader set of hcASD genes are involved in this process has not been explored systematically nor have the biological pathways underlying this convergence been identified. Here, we leveraged CROP-Seq to repress 87 hcASD genes in a human in vitro model of cortical neurogenesis. We identified 17 hcASD genes whose repression significantly alters developmental trajectory and results in a common cellular state characterized by disruptions in proliferation, differentiation, cell cycle, microtubule biology, and RNA-binding proteins (RBPs). We also characterized over 3,000 differentially expressed genes, 286 of which had expression profiles correlated with changes in developmental trajectory. Overall, we uncovered transcriptional disruptions downstream of hcASD gene perturbations, correlated these disruptions with distinct differentiation phenotypes, and reinforced neurogenesis, microtubule biology, and RBPs as convergent points of disruption in ASD.

2.
bioRxiv ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38076945

ABSTRACT

Translating high-confidence (hc) autism spectrum disorder (ASD) genes into viable treatment targets remains elusive. We constructed a foundational protein-protein interaction (PPI) network in HEK293T cells involving 100 hcASD risk genes, revealing over 1,800 PPIs (87% novel). Interactors, expressed in the human brain and enriched for ASD but not schizophrenia genetic risk, converged on protein complexes involved in neurogenesis, tubulin biology, transcriptional regulation, and chromatin modification. A PPI map of 54 patient-derived missense variants identified differential physical interactions, and we leveraged AlphaFold-Multimer predictions to prioritize direct PPIs and specific variants for interrogation in Xenopus tropicalis and human forebrain organoids. A mutation in the transcription factor FOXP1 led to reconfiguration of DNA binding sites and altered development of deep cortical layer neurons in forebrain organoids. This work offers new insights into molecular mechanisms underlying ASD and describes a powerful platform to develop and test therapeutic strategies for many genetically-defined conditions.

3.
Development ; 150(14)2023 07 15.
Article in English | MEDLINE | ID: mdl-37366052

ABSTRACT

Gene ontology analyses of high-confidence autism spectrum disorder (ASD) risk genes highlight chromatin regulation and synaptic function as major contributors to pathobiology. Our recent functional work in vivo has additionally implicated tubulin biology and cellular proliferation. As many chromatin regulators, including the ASD risk genes ADNP and CHD3, are known to directly regulate both tubulins and histones, we studied the five chromatin regulators most strongly associated with ASD (ADNP, CHD8, CHD2, POGZ and KMT5B) specifically with respect to tubulin biology. We observe that all five localize to microtubules of the mitotic spindle in vitro in human cells and in vivo in Xenopus. Investigation of CHD2 provides evidence that mutations present in individuals with ASD cause a range of microtubule-related phenotypes, including disrupted localization of the protein at mitotic spindles, cell cycle stalling, DNA damage and cell death. Lastly, we observe that ASD genetic risk is significantly enriched among tubulin-associated proteins, suggesting broader relevance. Together, these results provide additional evidence that the role of tubulin biology and cellular proliferation in ASD warrants further investigation and highlight the pitfalls of relying solely on annotated gene functions in the search for pathological mechanisms.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Humans , Autistic Disorder/genetics , Autistic Disorder/complications , Autistic Disorder/metabolism , Chromatin/metabolism , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/pathology , Tubulin/metabolism , Histones/metabolism , Microtubules/metabolism , Spindle Apparatus/metabolism
5.
Neuron ; 109(5): 788-804.e8, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33497602

ABSTRACT

Gene Ontology analyses of autism spectrum disorders (ASD) risk genes have repeatedly highlighted synaptic function and transcriptional regulation as key points of convergence. However, these analyses rely on incomplete knowledge of gene function across brain development. Here we leverage Xenopus tropicalis to study in vivo ten genes with the strongest statistical evidence for association with ASD. All genes are expressed in developing telencephalon at time points mapping to human mid-prenatal development, and mutations lead to an increase in the ratio of neural progenitor cells to maturing neurons, supporting previous in silico systems biological findings implicating cortical neurons in ASD vulnerability, but expanding the range of convergent functions to include neurogenesis. Systematic chemical screening identifies that estrogen, via Sonic hedgehog signaling, rescues this convergent phenotype in Xenopus and human models of brain development, suggesting a resilience factor that may mitigate a range of ASD genetic risks.


Subject(s)
Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/physiopathology , Cerebral Cortex/growth & development , Estrogens/physiology , Neurogenesis , Animals , Autism Spectrum Disorder/pathology , Cerebral Cortex/drug effects , Cerebral Cortex/pathology , Drug Evaluation, Preclinical , Estrogens/administration & dosage , Female , Gene Expression Regulation, Developmental , Humans , Male , Risk Factors , Signal Transduction , Xenopus
6.
Stem Cell Reports ; 12(5): 869-877, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31006631

ABSTRACT

Leveraging the extraordinary potential of human pluripotent stem cells (hPSCs) requires an understanding of the mechanisms underlying cell-fate decisions. Substrate elasticity can induce differentiation by signaling through the transcriptional coactivator Yes-associated protein (YAP). Cells cultured on surfaces mimicking brain elasticity exclude YAP from their nuclei and differentiate to neurons. How YAP localization is controlled during neural differentiation has been unclear. We employed CRISPR/Cas9 to tag endogenous YAP in hPSCs and used this fusion protein to identify YAP's interaction partners. This engineered cell line revealed that neural differentiation promotes a change in YAP interactors, including a dramatic increase in angiomotin (AMOT) interaction with YAP. AMOT regulates YAP localization during differentiation. AMOT expression increases during neural differentiation and leads to YAP nuclear exclusion. Our findings that AMOT-dependent regulation of YAP helps direct hPSC fate provide insight into the molecular mechanisms by which the microenvironment can induce neural differentiation.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Microfilament Proteins/metabolism , Neurons/metabolism , Pluripotent Stem Cells/metabolism , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing/genetics , Angiomotins , Cell Differentiation/drug effects , Cell Line , Cell Nucleus/metabolism , Cysteine Proteinase Inhibitors/pharmacology , Cytoplasm/metabolism , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Humans , Intercellular Signaling Peptides and Proteins/genetics , Leupeptins/pharmacology , Microfilament Proteins/genetics , Neurons/cytology , Pluripotent Stem Cells/cytology , Proteasome Endopeptidase Complex/metabolism , Protein Binding/drug effects , Proteolysis/drug effects , Transcription Factors/genetics , YAP-Signaling Proteins
7.
Proc Natl Acad Sci U S A ; 111(38): 13805-10, 2014 Sep 23.
Article in English | MEDLINE | ID: mdl-25201954

ABSTRACT

Physical stimuli can act in either a synergistic or antagonistic manner to regulate cell fate decisions, but it is less clear whether insoluble signals alone can direct human pluripotent stem (hPS) cell differentiation into specialized cell types. We previously reported that stiff materials promote nuclear localization of the Yes-associated protein (YAP) transcriptional coactivator and support long-term self-renewal of hPS cells. Here, we show that even in the presence of soluble pluripotency factors, compliant substrata inhibit the nuclear localization of YAP and promote highly efficient differentiation of hPS cells into postmitotic neurons. In the absence of neurogenic factors, the effective substrata produce neurons rapidly (2 wk) and more efficiently (>75%) than conventional differentiation methods. The neurons derived from substrate induction express mature markers and possess action potentials. The hPS differentiation observed on compliant surfaces could be recapitulated on stiff surfaces by adding small-molecule inhibitors of F-actin polymerization or by depleting YAP. These studies reveal that the matrix alone can mediate differentiation of hPS cells into a mature cell type, independent of soluble inductive factors. That mechanical cues can override soluble signals suggests that their contributions to early tissue development and lineage commitment are profound.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Culture Techniques/methods , Cell Differentiation , Extracellular Matrix/chemistry , Neurons/metabolism , Phosphoproteins/metabolism , Pluripotent Stem Cells/metabolism , Actins/metabolism , Cells, Cultured , Humans , Neurons/cytology , Pluripotent Stem Cells/cytology , Time Factors , Transcription Factors , YAP-Signaling Proteins
8.
FASEB J ; 27(2): 738-49, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23070606

ABSTRACT

Deciphering the structural requirements and mechanisms for internalization of cell-penetrating peptides (CPPs) is required to improve their delivery efficiency. Herein, a unique role of tryptophan (Trp) residues in the interaction and structuring of cationic CPP sequences with glycosaminoglycans (GAGs) has been characterized, in relation with cell internalization. Using isothermal titration calorimetry, circular dichroism, NMR, mass spectrometry, and phase-contrast microscopy, we compared the interaction of 7 basic CPPs with 5 classes of GAGs. We found that the affinity of CPPs for GAGs increases linearly with the number of Trp residues, from 30 nM for a penetratin analog with 1 Trp residue to 1.5 nM for a penetratin analog with 6 Trp residues for heparin (HI); peptides with Trp residues adopt a predominantly ß-strand structure in complex with HI and form large, stable ß-sheet aggregates with GAGs; and in the absence of any cytotoxicity effect, the quantity of peptide internalized into CHO cells increased 2 times with 1 Trp residue, 10 times with 2 Trp residues, and 20 times with 3 Trp residues, compared with +6 peptides with no Trp residues. Therefore, Trp residues represent molecular determinants in basic peptide sequences not only for direct membrane translocation but also for efficient endocytosis through GAGs.


Subject(s)
Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/metabolism , Endocytosis/physiology , Glycosaminoglycans/metabolism , Amino Acid Sequence , Animals , Binding Sites , Biological Transport, Active , CHO Cells , Cell Membrane/metabolism , Cell-Penetrating Peptides/genetics , Cricetinae , Cricetulus , Glycosaminoglycans/chemistry , Models, Biological , Molecular Sequence Data , Molecular Structure , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Structure, Secondary , Thermodynamics , Tryptophan/chemistry
9.
PLoS One ; 6(9): e24096, 2011.
Article in English | MEDLINE | ID: mdl-21915283

ABSTRACT

BACKGROUND: Penetratin is a positively charged cell-penetrating peptide (CPP) that has the ability to bind negatively charged membrane components, such as glycosaminoglycans and anionic lipids. Whether this primary interaction of penetratin with these cell surface components implies that the peptide will be further internalized is not clear. METHODOLOGY: Using mass spectrometry, the amount of internalized and membrane bound penetratin remaining after washings, were quantified in three different cell lines: wild type (WT), glycosaminoglycans- (GAG(neg)) and sialic acid-deficient (SA(neg)) cells. Additionally, the affinity and kinetics of the interaction of penetratin to membrane models composed of pure lipids and membrane fragments from the referred cell lines was investigated, as well as the thermodynamics of such interactions using plasmon resonance and calorimetry. PRINCIPAL FINDINGS: Penetratin internalized with the same efficacy in the three cell lines at 1 µM, but was better internalized at 10 µM in SA(neg)>WT>GAG(neg). The heat released by the interaction of penetratin with these cells followed the ranking order of internalization efficiency. Penetratin had an affinity of 10 nM for WT cells and µM for SA(neg) and GAG(neg) cells and model membrane of phospholipids. The remaining membrane-bound penetratin after cells washings was similar in WT and GAG(neg) cells, which suggested that these binding sites relied on membrane phospholipids. The interaction of penetratin with carbohydrates was more superficial and reversible while it was stronger with phospholipids, likely because the peptide can intercalate between the fatty acid chains. CONCLUSION/SIGNIFICANCE: These results show that accumulation and high-affinity binding of penetratin at the cell-surface do not reflect the internalization efficacy of the peptide. Altogether, these data further support translocation (membrane phospholipids interaction) as being the internalization pathway used by penetratin at low micromolecular concentration, while endocytosis is activated at higher concentration and requires accumulation of the peptide on GAG and GAG clustering.


Subject(s)
Cell Membrane/metabolism , Cell-Penetrating Peptides/metabolism , Animals , CHO Cells , Calorimetry , Cricetinae , Protein Binding , Protein Transport/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...