Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 105(12): 125504, 2010 Sep 17.
Article in English | MEDLINE | ID: mdl-20867656

ABSTRACT

Using electron correlograph analysis we show that coherent nanodiffraction patterns from sputtered amorphous silicon indicate that there is more local crystallinity in unannealed amorphous silicon than was previously suspected. By comparing with simulations for various models we show that within a typical unannealed amorphous silicon film a substantial volume fraction (>50%) is topologically crystalline with correlation lengths up to 2 nm. Electron correlograph analysis is a variant of the fluctuation electron microscopy technique and its sensitivity to local crystalline ordering is derived from its sensitivity to four-body correlations.

2.
Ultramicroscopy ; 110(11): 1390-6, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20650565

ABSTRACT

Principal component analysis is routinely applied to analyze data sets in electron energy-loss spectroscopy (EELS). We show how physically meaningful spectra can be obtained from the principal components using a knowledge of the scattering of the probe electron and the geometry of the experiment. This approach is illustrated by application to EELS data for the carbon K edge in graphite obtained using a conventional transmission electron microscope. The effect of scattering of the probe electron is accounted for, yielding spectra which are equivalent to experiments using linearly polarized X-rays. The approach is general and can also be applied to EELS in the context of scanning transmission electron microscopy.

3.
Ultramicroscopy ; 106(11-12): 1001-11, 2006.
Article in English | MEDLINE | ID: mdl-16843600

ABSTRACT

There are a number of factors affecting the formation of images based on core-loss spectroscopy in high-resolution electron microscopy. We demonstrate unambiguously the need to use a full nonlocal description of the effective core-loss interaction for experimental results obtained from high angular resolution electron channelling electron spectroscopy. The implications of this model are investigated for atomic resolution scanning transmission electron microscopy. Simulations are used to demonstrate that core-loss spectroscopy images formed using fine probes proposed for future microscopes can result in images that do not correspond visually with the structure that has led to their formation. In this context, we also examine the effect of varying detector geometries. The importance of the contribution to core-loss spectroscopy images by dechannelled or diffusely scattered electrons is reiterated here.

4.
Proc Natl Acad Sci U S A ; 94(10): 5383-8, 1997 May 13.
Article in English | MEDLINE | ID: mdl-9144246

ABSTRACT

Chaperonins are high molecular mass double-ring structures composed of 60-kDa protein subunits. In the hyperthermophilic archaeon Sulfolobus shibatae the two chaperonin proteins represent approximately 4% of its total protein and have a combined intracellular concentration of >30 mg/ml. At concentrations >/= 0.5 mg/ml purified chaperonins form filaments in the presence of Mg2+ and nucleotides. Filament formation requires nucleotide binding (not hydrolysis), and occurs at physiological temperatures in biologically relevant buffers, including a buffer made from cell extracts. These observations suggest that chaperonin filaments may exist in vivo and the estimated 4600 chaperonins per cell suggest that such filaments could form an extensive cytostructure. We observed filamentous structures in unfixed, uranyl-acetate-stained S. shibatae cells, which resemble the chaperonin filaments in size and appearance. ImmunoGold (Janssen) labeling using chaperonin antibodies indicated that many chaperonins are associated with insoluble cellular structures and these structures appear to be filamentous in some areas, although they could not be uranyl-acetate-stained. The existence of chaperonin filaments in vivo suggests a mechanism whereby their protein-folding activities can be regulated. More generally, the filaments themselves may play a cytoskeletal role in Archaea.


Subject(s)
Chaperonins/ultrastructure , Cytoskeleton/ultrastructure , Sulfolobus/ultrastructure , Actin Cytoskeleton/ultrastructure , Adenosine Diphosphate/pharmacology , Adenosine Triphosphate/pharmacology , Adenylyl Imidodiphosphate/pharmacology , Chaperonins/drug effects , Chaperonins/isolation & purification , Magnesium/pharmacology , Microscopy, Electron , Microscopy, Immunoelectron
SELECTION OF CITATIONS
SEARCH DETAIL
...