Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Virchows Arch ; 483(3): 317-331, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37656249

ABSTRACT

Session 3 of the lymphoma workshop of the XXI joint meeting of the European Association for Haematopathology and the Society for Hematopathology took place in Florence, Italy, on September 22, 2022. The topics of this session were splenic and nodal marginal zone lymphomas, transformation in marginal zone lymphomas, and pediatric nodal marginal zone lymphomas and their differential diagnosis as well as related entities. Forty-two cases in these categories were submitted to the workshop, including splenic lymphomas (marginal zone and diffuse red pulp lymphomas), transformed marginal zone lymphomas (splenic and nodal), nodal marginal zone lymphomas with increased TFH-cells, and pediatric nodal marginal zone lymphomas. The case review highlighted some of the principal problems in the diagnosis of marginal zone lymphomas, including the difficulties in the distinction between splenic marginal zone lymphoma, splenic diffuse red pulp lymphoma, and hairy cell leukemia variant/splenic B-cell lymphoma with prominent nucleoli which requires integration of clinical features, immunophenotype, and morphology in blood, bone marrow, and spleen; cases of marginal zone lymphoma with markedly increased TFH-cells, simulating a T-cell lymphoma, where molecular studies (clonality and mutation detection) can help to establish the final diagnosis; the criteria for transformation of marginal zone lymphomas, which are still unclear and might require the integration of morphological and molecular data; the concept of an overlapping spectrum between pediatric nodal marginal zone lymphoma and pediatric-type follicular lymphoma; and the distinction between pediatric nodal marginal zone lymphoma and "atypical" marginal zone hyperplasia, where molecular studies are mandatory to correctly classify cases.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Lymphoma, B-Cell, Marginal Zone , Lymphoma, Follicular , Splenic Neoplasms , Humans , Child , Lymphoma, B-Cell, Marginal Zone/genetics , Lymphoma, Follicular/pathology , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Spleen/pathology , Bone Marrow/pathology , Hyperplasia/pathology , Splenic Neoplasms/pathology
3.
Front Oncol ; 13: 1231601, 2023.
Article in English | MEDLINE | ID: mdl-37664054

ABSTRACT

Diagnosing any of the more than 30 types of T-cell lymphomas is considered a challenging task for many pathologists and currently requires morphological expertise as well as the integration of clinical data, immunophenotype, flow cytometry and clonality analyses. Even considering all available information, some margin of doubt might remain using the current diagnostic procedures. In recent times, the genetic landscape of most T-cell lymphomas has been elucidated, showing a number of diagnostically relevant mutations. In addition, recent data indicate that some of these genetic alterations might bear prognostic and predictive value. Extensive genetic analyses, such as whole exome or large panel sequencing are still expensive and time consuming, therefore limiting their application in routine diagnostic. We therefore devoted our effort to develop a lean approach for genetic analysis of T-cell lymphomas, focusing on maximum efficiency rather than exhaustively covering all possible targets. Here we report the results generated with our small amplicon-based panel that could be used routinely on paraffin-embedded and even decalcified samples, on a single sample basis in parallel with other NGS-panels used in our routine diagnostic lab, in a relatively short time and with limited costs. We tested 128 available samples from two German reference centers as part of our routine work up (among which 116 T-cell lymphomas), which is the largest routine diagnostic series reported to date. Our results showed that this assay had a very high rate of technical success (97%) and could detect mutations in the majority (79%) of tested T-cell lymphoma samples.

5.
Virchows Arch ; 483(3): 333-348, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37646869

ABSTRACT

Cytotoxic peripheral T-cell lymphomas and EBV-positive T/NK-cell lymphoproliferative diseases were discussed at the 2022 European Association for Haematopathology/Society for Hematopathology lymphoma workshop held in Florence, Italy. This session focused on (i) primary nodal EBV-positive T and NK-cell lymphomas (primary nodal-EBV-TNKL), (ii) extranodal EBV-positive T/NK lymphoproliferative diseases (LPD) in children and adults, (iii) cytotoxic peripheral T-cell lymphomas, NOS (cPTCL-NOS), EBV-negative, and (iv) miscellaneous cases. Primary nodal-EBV-TNKL is a newly recognized entity which is rare, aggressive, and associated with underlying immune deficiency/immune dysregulation. All cases presented with lymphadenopathy but some demonstrated involvement of tonsil/Waldeyer's ring and extranodal sites. The majority of tumors are of T-cell lineage, and the most frequent mutations involve the epigenetic modifier genes, such as TET2 and DNMT3A, and JAK-STAT genes. A spectrum of EBV-positive T/NK LPD involving extranodal sites were discussed and highlight the diagnostic challenge with primary nodal-EBV-TNKL when these extranodal EBV-positive T/NK LPD cases demonstrate predominant nodal disease either at presentation or during disease progression from chronic active EBV disease. The majority of cPTCL-NOS demonstrated the TBX21 phenotype. Some cases had a background of immunosuppression or immune dysregulation. Interestingly, an unexpected association of cPTCL-NOS, EBV-positive and negative, with TFH lymphomas/LPDs was observed in the workshop cases. Similar to a published literature, the genetic landscape of cPTCL-NOS from the workshop showed frequent mutations in epigenetic modifiers, including TET2 and DNMT3A, suggesting a role of clonal hematopoiesis in the disease pathogenesis.


Subject(s)
Epstein-Barr Virus Infections , Lymphoma, T-Cell, Peripheral , Adult , Child , Humans , Lymphoma, T-Cell, Peripheral/genetics , Herpesvirus 4, Human/genetics , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/pathology , Clonal Hematopoiesis , T-Lymphocytes/pathology
6.
Virchows Arch ; 483(3): 281-298, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37555980

ABSTRACT

Emerging entities and molecular subgroups in large B-cell lymphomas (LBCLs) were discussed during the 2022 European Association for Haematopathology/Society for Hematopathology workshop in Florence, Italy. This session focused on newly recognized diseases and their diagnostic challenges. High-grade/large B-cell lymphoma with 11q aberration (HG/LBCL-11q) is defined by chromosome 11q-gains and telomeric loss. FISH analysis is recommended for the diagnosis. HG/LBCL-11q can occur in the setting of immunodeficiency, including ataxia-telangiectasia, and predominates in children. The morphological spectrum of these cases is broader than previously thought with often Burkitt-like morphology and coarse apoptotic bodies. It has a Burkitt-like immunophenotype (CD10+, BCL6+, BCL2-) but MYC expression is weak or negative, lacks MYC rearrangement, and is in contrast to Burkitt lymphoma 50% of the cases express LMO2. LBCL with IRF4 rearrangement (LBCL-IRF4) occurs mainly in the pediatric population but also in adults. LBCL-IRF4 has an excellent prognosis, with distinguishing molecular findings. IRF4 rearrangements, although characteristic of this entity, are not specific and can be found in association with other chromosomal translocations in other large B-cell lymphomas. Other molecular subgroups discussed included primary bone diffuse large B-cell lymphoma (PB-DLBCL), which has distinctive clinical presentation and molecular findings, and B-acute lymphoblastic leukemia (B-ALL) with IGH::MYC translocation recently segregated from Burkitt lymphoma with TdT expression. This latter disorder has molecular features of precursor B-cells, often tetrasomy 1q and recurrent NRAS and KRAS mutations. In this report, novel findings, recommendations for diagnosis, open questions, and diagnostic challenges raised by the cases submitted to the workshop will be discussed.


Subject(s)
Burkitt Lymphoma , Lymphoma, Large B-Cell, Diffuse , Adult , Humans , Child , Burkitt Lymphoma/genetics , Burkitt Lymphoma/pathology , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Chromosome Aberrations , Translocation, Genetic , Mutation
7.
Virchows Arch ; 483(3): 299-316, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37555981

ABSTRACT

The 2022 European Association for Haematopathology/Society for Hematopathology lymphoma workshop session on cavity-based lymphomas included sixty-eight cases in seven sections. The disease entities discussed include primary effusion lymphomas (PEL), extracavitary primary effusion lymphomas and confounding entities (ECPEL), HHV8-negative B-lineage lymphomas-effusion based (EBV-negative, EBV-positive, and plasmablastic types), diffuse large B-cell lymphoma associated with chronic inflammation, fibrin-associated diffuse large B-cell lymphoma (FA-DLBCL), breast implant-associated anaplastic large cell lymphoma (BIA-ALCL), and other lymphomas presenting as an effusion. All entities above are discussed; however, three are delved into greater detail given the challenges with classification: ECPEL, HHV8-negative effusion-based lymphomas, and FA-DLBCL. Cases exemplifying the diagnostic difficulty in differentiating ECPEL from HHV8-positive diffuse large B-cell lymphoma and germinotropic lymphoproliferative disorder were discussed. The more recently recognized effusion-based HHV8-negative large B-cell lymphoma is explored, with several cases submitted raising the question if this subset should be carved out as a specific entity, and if so, what should be the refining diagnostic criteria. Case submissions to the FA-DLBCL section yielded one of the largest case series to date, including classic cases, cases furthering the discussion on disease sites and prognosis, as well as novel concepts to be considered in this entity. The 2022 EA4HP/SH workshop cases allowed for further confirmation of the characteristics of some of the more historically accepted cavity-based lymphomas, as well as further inquiry and debate on relatively new or evolving entities.


Subject(s)
Herpesvirus 8, Human , Lymphoma, Large B-Cell, Diffuse , Lymphoma, Large-Cell, Anaplastic , Lymphoma, Primary Effusion , Lymphoproliferative Disorders , Humans , Lymphoma, Primary Effusion/pathology , Lymphoma, Large B-Cell, Diffuse/diagnosis , Lymphoma, Large B-Cell, Diffuse/pathology
8.
Virchows Arch ; 483(3): 349-365, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37500795

ABSTRACT

Follicular helper T-cell lymphomas (TFH lymphomas) were discussed in session V of the lymphoma workshop of the European Association for Haematopathology (EA4HP)/Society for Hematopathology (SH) 2022 meeting in Florence, Italy. The session focused on the morphologic spectrum of TFH lymphoma, including its three subtypes: angioimmunoblastic-type (AITL), follicular-type, and not otherwise specified (NOS). The submitted cases encompassed classic examples of TFH lymphoma and unusual cases such as those with early or indolent presentations, associated B-cell proliferations, or Hodgkin/Reed-Sternberg-like cells. The relationship between TFH lymphoma and clonal hematopoiesis was highlighted by several cases documenting divergent evolution of myeloid neoplasm and AITL from shared clonal mutations. The distinction between TFH lymphoma and peripheral T-cell lymphoma, not otherwise specified (PTCL, NOS), was stressed, and many challenging examples were presented. Various cases highlighted the difficulties of differentiating TFH lymphoma from other established types of lymphoma and reactive conditions. Cutaneous T-cell lymphoma expressing TFH markers, particularly when resulting in lymph node involvement, should be distinguished from TFH lymphomas. Additional immunophenotyping and next-generation sequencing studies were performed on various cases in this session, highlighting the importance of these technologies to our current understanding and classification of TFH lymphomas.


Subject(s)
Lymphoma, T-Cell, Peripheral , Skin Neoplasms , Humans , Clonal Hematopoiesis , T-Lymphocytes, Helper-Inducer/pathology , Lymphoma, T-Cell, Peripheral/pathology , Lymph Nodes/pathology , Skin Neoplasms/pathology
9.
Pathologie (Heidelb) ; 44(3): 154-165, 2023 May.
Article in German | MEDLINE | ID: mdl-37093245

ABSTRACT

The 5th edition of the WHO classification (WHO-HAEM5) and the International Consensus Classification (ICC) have considerable overlap but also some distinct differences in categorizing indolent B­cell lymphomas. Most differences with the expected impact on the daily diagnostic routine relate to follicular lymphoma (FL). Grading of FL remains mandatory only in the ICC; a diffuse growth pattern in an FL with > 15 blasts per high-power field (FL grade 3A) is not automatically classified as DLBCL according to WHO-HAEM5, and an FL subtype with unusual morphology (blastoid or large centrocyte) and biology is recognized as an entity only in the WHO-HAEM5. With the exception of B­prolymphocytic leukemia, which is no longer acknowledged in WHO-HAEM5, there are only minor differences between both classifications and include updated names of entities, improved diagnostic criteria, and upgrades from provisional to definite entities.


Subject(s)
Lymphoma, B-Cell , Lymphoma, Follicular , Humans , Lymphoma, B-Cell/diagnosis , Lymphoma, Follicular/diagnosis
10.
Virchows Arch ; 481(6): 935-943, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36219238

ABSTRACT

The subclassification of diffuse large B-cell lymphoma (DLBCL) into germinal center B-cell-like (GCB) and activated B-cell-like (ABC) subtypes has become mandatory in the 2017 update of the WHO classification of lymphoid neoplasms and will continue to be used in the WHO 5th edition. The RNA-based Lymph2Cx assay has been validated as a reliable surrogate of high-throughput gene expression profiling assays for distinguishing between GCB and ABC DLBCL and provides reliable results from formalin-fixed, paraffin-embedded (FFPE) material. This test has been previously used in clinical trials, but experience from real-world routine application is rare. We routinely applied the Lymph2Cx assay to day-to-day diagnostics on a series of 147 aggressive B-cell lymphoma cases and correlated our results with the immunohistochemical subclassification using the Hans algorithm and fluorescence in situ hybridization findings using break-apart probes for MYC, BCL2, and BCL6. The routine use of the Lymph2Cx assay had a high technical success rate (94.6%) with a low rate of failure due to poor material and/or RNA quality. The Lymph2Cx assay was discordant with the Hans algorithm in 18% (23 of 128 cases). Discordant cases were mainly classified as GCB by the Hans algorithm and as ABC by Lymph2Cx (n = 11, 8.6%). Only 5 cases (3.9%) were classified as non-GCB by the Hans algorithm and as GCB by Lymph2Cx. Additionally, 5.5% of cases (n = 7) were left unclassified by Lymph2Cx, whereas they were defined as GCB (n = 4) or non-GCB (n = 3) by the Hans algorithm. Our data support the routine applicability of the Lymph2Cx assay.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Humans , In Situ Hybridization, Fluorescence , Prospective Studies , Lymphoma, Large B-Cell, Diffuse/diagnosis , Lymphoma, Large B-Cell, Diffuse/genetics , Germinal Center/pathology , RNA/metabolism , RNA/therapeutic use
11.
Front Oncol ; 12: 917115, 2022.
Article in English | MEDLINE | ID: mdl-35734588

ABSTRACT

Two main variants of Richter syndrome (RS) are recognized, namely, the diffuse large B-cell lymphoma (DLBCL) and the Hodgkin's lymphoma (HL) variant. Clonal relationship, defined as an identity of the immunoglobulin heavy chain variable (IGHV) region sequence between chronic lymphocytic leukemia (CLL) and RS clones, characterizes patients with a poor prognosis. Due to method sensitivity, this categorization is performed without considering the possibility of small-size ancillary clones, sharing the same phenotype with the preexisting predominant CLL clone, but with different IGHV rearrangements. Here we describe and molecularly profile the peculiar case of a patient with a CLL-like monoclonal B-cell lymphocytosis (MBL), who sequentially developed a DLBCL, which occurred concomitantly to progression of MBL to CLL, and a subsequent HL. Based on standard IGHV clonality analysis, DLBCL was considered clonally unrelated to the concomitantly expanded CLL clone and treated as a de novo lymphoma, achieving a persistent response. Three years later, the patient further developed a clonally unrelated HL, refractory to bendamustine, which was successfully treated with brentuximab vedotin and radiotherapy, and later with pembrolizumab. We retrospectively performed additional molecular testing, by applying next-generation sequencing (NGS) of immunoglobulin repertoire (Ig-rep) techniques and a more sensitive allele-specific oligonucleotide-droplet digital PCR (ASO-ddPCR) strategy, in order to quantitatively investigate the presence of the rearranged IGHV genes in tumor specimens collected during the disease course. In this highly complex case, the application of modern and sensitive molecular technologies uncovered that DLBCL, initially considered as a de novo lymphoma, was instead the result of the transformation of a preexisting ancillary B-cell clone, which was already present at the time of first MBL diagnosis. A similar approach was also applied on the HL sample, showing its clonal unrelatedness to the previous MBL and DLBCL.

12.
Histopathology ; 80(7): 1071-1080, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35322462

ABSTRACT

AIMS: To investigate Epstein-Barr virus (EBV) latency types in 19 cases of EBV-positive nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL), as such information is currently incomplete. METHODS AND RESULTS: Immunohistochemistry (IHC) for CD20, CD79a, PAX5, OCT2, CD30, CD15, CD3 and programmed cell death protein 1 was performed. For EBV detection, in-situ hybridisation (ISH) for EBV-encoded RNA (EBER) was employed combined with IHC for EBV-encoded latent membrane protein (LMP)-1, EBV-encoded nuclear antigen (EBNA)-2, and EBV-encoded BZLF1. In 95% of the cases, neoplastic cells with features of Hodgkin and Reed-Sternberg (HRS) cells were present, mostly showing expression of CD30. In all cases, the B-cell phenotype was largely intact, and delineation from classic Hodgkin lymphoma (CHL) was further supported by myocyte enhancer factor 2B (MEF2B) detection. All tumour cells were EBER-positive except in two cases. EBV latency type II was most frequent (89%) and type I was rare. Cases with latency type I were CD30-negative. Five cases contained some BZLF1-positive and/or EBNA-2-positive bystander lymphocytes. CONCLUSIONS: As HRS morphology of neoplastic cells and CD30 expression are frequent features of EBV-positive NLPHL, preservation of the B-cell transcription programme, MEF2B expression combined with NLPHL-typical architecture and background composition facilitate distinction from CHL. EBER ISH is the method of choice to identify these cases. The majority present with EBV latency type II, and only rare cases present with latency type I, which can be associated with missing CD30 expression. The presence of occasional bystander lymphocytes expressing BZLF1 and/or EBNA-2 and the partial EBV infection of neoplastic cells in some cases could indicate that EBV is either not primarily involved or is only a transient driver in the pathogenesis of EBV-positive NLPHL.


Subject(s)
Epstein-Barr Virus Infections , Hodgkin Disease , Epstein-Barr Virus Infections/pathology , Herpesvirus 4, Human/genetics , Hodgkin Disease/pathology , Humans , Ki-1 Antigen/metabolism , Lymphocytes/pathology , Reed-Sternberg Cells/metabolism
13.
Br J Haematol ; 196(1): 116-126, 2022 01.
Article in English | MEDLINE | ID: mdl-34520052

ABSTRACT

High programmed cell death 1 ligand 1 (PD-L1) protein expression and copy number alterations (CNAs) of the corresponding genomic locus 9p24.1 in Hodgkin- and Reed-Sternberg cells (HRSC) have been shown to be associated with favourable response to anti-PD-1 checkpoint inhibition in relapsed/refractory (r/r) classical Hodgkin lymphoma (cHL). In the present study, we investigated baseline 9p24.1 status as well as PD-L1 and major histocompatibility complex (MHC) class I and II protein expression in 82 biopsies from patients with early stage unfavourable cHL treated with anti-PD-1-based first-line treatment in the German Hodgkin Study Group (GHSG) NIVAHL trial (ClinicalTrials.gov Identifier: NCT03004833). All evaluated specimens showed 9p24.1 CNA in HRSC to some extent, but with high intratumoral heterogeneity and an overall smaller range of alterations than reported in advanced-stage or r/r cHL. All but two cases (97%) showed PD-L1 expression by the tumour cells in variable amounts. While MHC-I was rarely expressed in >50% of HRSC, MHC-II expression in >50% of HRSC was found more frequently. No obvious impact of 9p24.1 CNA or PD-L1 and MHC-I/II expression on early response to the highly effective anti-PD-1-based NIVAHL first-line treatment was observed. Further studies evaluating an expanded panel of potential biomarkers are needed to optimally stratify anti-PD-1 first-line cHL treatment.


Subject(s)
B7-H1 Antigen/genetics , Chromosomes, Human, Pair 9 , Hodgkin Disease/diagnosis , Hodgkin Disease/etiology , Translocation, Genetic , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor , Combined Modality Therapy , DNA Copy Number Variations , Disease Management , Genetic Association Studies , Genetic Predisposition to Disease , Germany , Hodgkin Disease/mortality , Hodgkin Disease/therapy , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , Prognosis , Treatment Outcome
14.
Hematol Oncol ; 40(2): 181-190, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34783040

ABSTRACT

CD49d, the α4 chain of the VLA-4 integrin, is a negative prognosticator in chronic lymphocytic leukemia (CLL) with a key role in CLL cell-microenvironment interactions mainly occurring via its ligands VCAM-1 and fibronectin. In the present study, we focused on EMILIN-1 (Elastin-MIcrofibriL-INterfacer-1), an alternative VLA-4 ligand whose role has been so far reported only in non-hematological settings, by investigating: i) the distribution of EMILIN-1 in CLL-involved tissues; ii) the capability of EMILIN-1 to operate, via its globular C1q (gC1q) domain, as additional adhesion ligand in CLL; iii) the functional meaning of EMILIN-1 gC1q/VLA-4 interactions in CLL. EMILIN-1 is widely present in the CLL-involved areas of bone marrow biopsies (BMBs) without difference between CD49d negative and positive cases, displaying at least three different expression patterns: "fibrillar", "dot-like" and "mixed". The lack in CLL-BMB of neutrophil elastase, whose proteolytic activity degrades EMILIN-1 and impairs EMILIN-1 function, suggests full functional EMILIN-1 in CLL independently of its expression pattern. Functionally, EMILIN-1 gC1q domain promotes adhesion of CLL cells through specific interaction with VLA-4, and releases pro-survival signals for CLL cells, as demonstrated by enhanced ERK and AKT phosphorylation and impairment of in-vitro-induced apoptosis. EMILIN-1/VLA-4 interaction can efficiently contribute to the maintenance of the neoplastic clone in CLL.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Elastin , Humans , Integrin alpha4beta1/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Ligands , Membrane Glycoproteins , Microfibrils/metabolism , Microfibrils/pathology , Tumor Microenvironment
15.
Blood Adv ; 5(23): 4890-4900, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34614504

ABSTRACT

We previously reported that t(14;18)-negative follicular lymphomas (FL) show a clear reduction of newly acquired N-glycosylation sites (NANGS) in immunoglobulin genes. We therefore aimed to investigate in-depth the occurrence of NANGS in a larger cohort of t(14;18)-positive and t(14;18)-negative FL, including early (I/II) and advanced (III/IV) stage treatment-naive and relapsed tumors. The clonotype was determined by using a next-generation sequencing approach in a series of 68 FL with fresh frozen material [36 t(14;18) positive and 32 t(14;18) negative]. The frequency of NANGS differed considerably between t(14;18)-positive and t(14;18)-negative FL stage III/IV, but no difference was observed among t(14;18)-positive and t(14;18)-negative FL stage I/II. The introduction of NANGS in all t(14;18)-negative clinical subgroups occurred significantly more often in the FR3 region. Moreover, t(14;18)-negative treatment-naive FL, specifically those with NANGS, showed a strong bias for IGHV4-34 usage compared with t(14;18)-positive treatment-naive cases with NANGS; IGHV4-34 usage was never recorded in relapsed FL. In conclusion, subgroups of t(14;18)-negative FL might use different mechanisms of B-cell receptor stimulation compared with the lectin-mediated binding described in t(14;18)-positive FL, including responsiveness to autoantigens as indicated by biased IGHV4-34 usage and strong NANGS enrichment in FR3.


Subject(s)
Lymphoma, Follicular , Cohort Studies , Glycosylation , High-Throughput Nucleotide Sequencing , Humans , Lymphoma, Follicular/genetics
16.
Blood Adv ; 5(23): 5239-5257, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34625792

ABSTRACT

The expression of BCL6 in B-cell lymphoma can be deregulated by chromosomal translocations, somatic mutations in the promoter regulatory regions, or reduced proteasome-mediated degradation. FBXO11 was recently identified as a ubiquitin ligase that is involved in the degradation of BCL6, and it is frequently inactivated in lymphoma or other tumors. Here, we show that FBXO11 mutations are found in 23% of patients with Burkitt lymphoma (BL). FBXO11 mutations impaired BCL6 degradation, and the deletion of FBXO11 protein completely stabilized BCL6 levels in human BL cell lines. Conditional deletion of 1 or 2 copies of the FBXO11 gene in mice cooperated with oncogenic MYC and accelerated B-cell lymphoma onset, providing experimental evidence that FBXO11 is a haploinsufficient oncosuppressor in B-cell lymphoma. In wild-type and FBXO11-deficient BL mouse and human cell lines, targeting BCL6 via specific degraders or inhibitors partially impaired lymphoma growth in vitro and in vivo. Inhibition of MYC by the Omomyc mini-protein blocked cell proliferation and increased apoptosis, effects further increased by combined BCL6 targeting. Thus, by validating the functional role of FBXO11 mutations in BL, we further highlight the key role of BCL6 in BL biology and provide evidence that innovative therapeutic approaches, such as BCL6 degraders and direct MYC inhibition, could be exploited as a targeted therapy for BL.


Subject(s)
Burkitt Lymphoma , F-Box Proteins , Lymphoma, B-Cell , Animals , Burkitt Lymphoma/drug therapy , Burkitt Lymphoma/genetics , F-Box Proteins/genetics , Genes, myc , Humans , Lymphoma, B-Cell/genetics , Mice , Mutation , Protein-Arginine N-Methyltransferases/genetics , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/metabolism
17.
Pathol Res Pract ; 226: 153591, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34455363

ABSTRACT

Lipoblastoma is a rare benign mesenchymal neoplasm that typically occurs in infancy but may also occur in older age groups and various locations. Thus, there are often numerous clinical differential diagnoses. Moreover, lipoblastomas can show a broad histologic spectrum, which can hamper the correct diagnosis, particularly in small biopsies. At the genomic level, lipoblastomas are characterized by chromosomal fusions involving the PLAG1 gene. We investigated 11 lipoblastoma samples from 10 pediatric patients (age range five months to 12 years), including one patient with local recurrence, in view of their histopathological features, and performed targeted RNA sequencing. We found a broad histological spectrum with some tumors with prominent myxoid changes, but also tumors composed mainly of mature adipocytic cells, and classified the cases according to the literature as classic (mixed), maturing, or myxoid subtype. By targeted RNA sequencing analysis, we identified characteristic PLAG1 rearrangements in 70% of the investigated cases. Moreover, these analyses revealed three novel gene fusions, two affecting the PLAG1 gene and one involving HMGA2. Besides, we performed PLAG1 immunohistochemistry and identified positive cells, typically immature adipocytic cells and spindle cells, at various numbers in all cases. However, in the maturing areas, only very sparsely positive cells were found, limiting the value of the PLAG1 immunohistochemistry as an adjunct in the diagnosis of lipoblastoma, particularly for the maturing subtype and small biopsies. The presented case series confirms the broad morphological spectrum of lipoblastoma described in the literature and underlines the value of modern molecular diagnostic approaches as a supportive diagnostic tool in challenging cases and for gaining further insights into the molecular basis of this rare mesenchymal tumor.


Subject(s)
DNA-Binding Proteins/genetics , HMGA2 Protein/genetics , Lipoblastoma/genetics , Lipoblastoma/pathology , Child , Child, Preschool , Female , Humans , Infant , Male , Oncogene Fusion/genetics
18.
Blood ; 138(12): 1053-1066, 2021 09 23.
Article in English | MEDLINE | ID: mdl-33900379

ABSTRACT

B-cell receptor (BCR) signals play a critical role in the pathogenesis of chronic lymphocytic leukemia (CLL), but their role in regulating CLL cell proliferation has still not been firmly established. Unlike normal B cells, CLL cells do not proliferate in vitro upon engagement of the BCR, suggesting that CLL cell proliferation is regulated by other signals from the microenvironment, such as those provided by Toll-like receptors or T cells. Here, we report that BCR engagement of human and murine CLL cells induces several positive regulators of the cell cycle, but simultaneously induces the negative regulators CDKN1A, CDKN2A, and CDKN2B, which block cell-cycle progression. We further show that introduction of genetic lesions that downregulate these cell-cycle inhibitors, such as inactivating lesions in CDKN2A, CDKN2B, and the CDKN1A regulator TP53, leads to more aggressive disease in a murine in vivo CLL model and spontaneous proliferation in vitro that is BCR dependent but independent of costimulatory signals. Importantly, inactivating lesions in CDKN2A, CDKN2B, and TP53 frequently co-occur in Richter syndrome (RS), and BCR stimulation of human RS cells with such lesions is sufficient to induce proliferation. We also show that tumor cells with combined TP53 and CDKN2A/2B abnormalities remain sensitive to BCR-inhibitor treatment and are synergistically sensitive to the combination of a BCR and cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor both in vitro and in vivo. These data provide evidence that BCR signals are directly involved in driving CLL cell proliferation and reveal a novel mechanism of Richter transformation.


Subject(s)
Cell Transformation, Neoplastic , Cyclin-Dependent Kinase Inhibitor p15 , Cyclin-Dependent Kinase Inhibitor p16 , Leukemia, Lymphocytic, Chronic, B-Cell , Receptors, Antigen, B-Cell , Signal Transduction , Tumor Suppressor Protein p53 , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/immunology , Cyclin-Dependent Kinase Inhibitor p15/genetics , Cyclin-Dependent Kinase Inhibitor p15/immunology , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/immunology , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Mice , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , Signal Transduction/genetics , Signal Transduction/immunology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/immunology
19.
Am J Clin Pathol ; 155(2): 211-238, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33367482

ABSTRACT

OBJECTIVES: The 2019 Society for Hematopathology and European Association for Haematopathology Workshop reviewed the spectrum of neoplastic, nonneoplastic, and borderline entities associated with reactive eosinophilia in tissue. METHODS: The workshop panel reviewed 46 cases covered in 2 workshop sessions. RESULTS: The 46 cases were presented with their consensus diagnoses during the workshop. Reactive eosinophilia in lymph nodes and other tissues may be accompanied by or be distinct from peripheral blood eosinophilia. Reactive etiologies included inflammatory disorders such as Kimura disease and IgG4-related disease, which may show overlapping pathologic features and reactions to infectious agents and hypersensitivity (covered in a separate review). Hodgkin, T-cell, and B-cell lymphomas and histiocytic neoplasms can result in reactive eosinophilia. The spectrum of these diseases is discussed and illustrated through representative cases. CONCLUSIONS: Reactive eosinophilia in lymph nodes and tissues may be related to both nonneoplastic and neoplastic lymphoid proliferations and histiocytic and nonhematolymphoid processes. Understanding the differential diagnosis of reactive eosinophilia and the potential for overlapping clinical and pathologic findings is critical in reaching the correct diagnosis so that patients can be treated appropriately.


Subject(s)
Diagnosis, Differential , Eosinophilia/etiology , Hypereosinophilic Syndrome , Adolescent , Adult , Aged , Eosinophils/pathology , Female , Hodgkin Disease/diagnosis , Hodgkin Disease/pathology , Humans , Hypereosinophilic Syndrome/diagnosis , Hypereosinophilic Syndrome/pathology , Immunoglobulin G4-Related Disease/diagnosis , Immunoglobulin G4-Related Disease/pathology , Lymph Nodes/pathology , Lymphocytes/pathology , Lymphoma/diagnosis , Lymphoma/pathology , Lymphoma, B-Cell/pathology , Male , Middle Aged , T-Lymphocytes/pathology
20.
Eur J Haematol ; 105(4): 468-475, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32542880

ABSTRACT

Primary pancreatic lymphoma (PPL) is a rare disease representing 0.1% of malignant lymphomas, which lacks well-defined diagnostic and therapeutic protocols. OBJECTIVES: To describe PPL clinical, diagnostic and histological characteristics, together with therapy and outcome, in a relatively large series of patients. METHODS: The study includes 39 PPL patients, aged ≥15 years, observed from January 2005 to December 2018, in 8 Italian Institutions. RESULTS: The main symptoms were abdominal pain (58%) and jaundice (47%). Lactate dehydrogenase serum levels were elevated in 43% of patients. Histological specimens were mostly obtained by percutaneous (41%) or endoscopic (36%) biopsy, with diffuse large B-cell lymphoma being the most frequent (69%) histological diagnosis. Chemotherapy was administered alone in 65% of patients, with radiotherapy in 17%, or after surgery in 9%. The 2-year overall survival (OS) was 62%, the 2-year progression-free survival (PFS) 44%. Debulking surgery (with or without chemotherapy) was associated with a significant worse OS. Three (9.4%) of 32 high-grade patients experienced a central nervous system (CNS) relapse. CONCLUSIONS: PPL is rare, often high-grade, with symptoms and localization similar to other pancreatic malignancies. Biopsy should be the preferred diagnostic method. High-grade PPL should undergo CNS prophylaxis.


Subject(s)
Lymphoma/diagnosis , Lymphoma/therapy , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/therapy , Biopsy , Disease Management , Disease Susceptibility , Female , Humans , Italy , Lymphoma/etiology , Lymphoma/mortality , Male , Neoplasm Grading , Neoplasm Staging , Pancreatic Neoplasms/etiology , Pancreatic Neoplasms/mortality , Patient Outcome Assessment , Symptom Assessment , Pancreatic Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL
...