Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Peptides ; 94: 56-63, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28676225

ABSTRACT

Cytidine triphosphate synthase 1 (CTPS1) is an enzyme expressed in activated lymphocytes that catalyzes the conversion of uridine triphosphate (UTP) to cytidine triphosphate (CTP) with ATP-dependent amination, using either L-glutamine or ammonia as the nitrogen source. Since CTP plays an important role in DNA/RNA synthesis, phospholipid synthesis, and protein sialyation, CTPS1-inhibition is expected to control lymphocyte proliferation and size expansion in inflammatory diseases. In contrast, CTPS2, an isozyme of CTPS1 possessing 74% amino acid sequence homology, is expressed in normal lymphocytes. Thus, CTPS1-selective inhibition is important to avoid undesirable side effects. Here, we report the discovery of CTpep-3: Ac-FRLGLLKAFRRLF-OH from random peptide libraries displayed on T7 phage, which exhibited CTPS1-selective binding with a KD value of 210nM in SPR analysis and CTPS1-selective inhibition with an IC50 value of 110nM in the enzyme assay. Furthermore, two fundamentally different approaches, enzyme inhibition assay and HDX-MS, provided the same conclusion that CTpep-3 acts by binding to the amidoligase (ALase) domain on CTPS1. To our knowledge, CTpep-3 is the first CTPS1-selective inhibitor.


Subject(s)
Bacteriophage T7/metabolism , Carbon-Nitrogen Ligases/antagonists & inhibitors , Lymphocytes/enzymology , Peptides/pharmacology , Humans , Lymphocytes/drug effects , Peptide Library
2.
Biochem Biophys Res Commun ; 486(3): 626-631, 2017 05 06.
Article in English | MEDLINE | ID: mdl-28315326

ABSTRACT

Poly(ADP-ribose) polymerases (PARPs) use nicotinamide adenine dinucleotide (NAD+) as a co-substrate to transfer ADP-ribose when it releases nicotinamide as the metabolized product. Enzymes of the PARP family play key roles in detecting and repairing DNA, modifying chromatin, regulating transcription, controlling energy metabolism, and inducing cell death. PARP14, the original member of the PARP family, has been reported to be associated with the development of inflammatory diseases and various cancer types, making it a potential therapeutic target. In this study, we purified the macrodomain-containing PARP14 enzyme and established an assay for detecting the auto-ribosylation activity of PARP14 using RapidFire high-throughput mass spectrometry and immunoradiometric assay using [3H]NAD+. Subsequently, we performed high-throughput screening using the assays and identified small-molecule hit compounds, which showed NAD+-competitive and PARP14-selective inhibitory activities. Co-crystal structures of PARP14 with certain hit compounds revealed that the inhibitors bind to the NAD+-binding site. Finally, we confirmed that the hit compounds interacted with intracellular PARP14 by a cell-based protein stabilization assay. Thus, we successfully identified primary candidate compounds for further investigation.


Subject(s)
Enzyme Inhibitors/chemistry , Poly(ADP-ribose) Polymerases/chemistry , Small Molecule Libraries/chemistry , Amino Acid Motifs , Binding Sites , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , High-Throughput Screening Assays , Humans , Kinetics , Models, Molecular , Poly(ADP-ribose) Polymerases/genetics , Protein Binding , Protein Domains , Protein Structure, Secondary , Radioimmunoassay , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...