Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMJ Open ; 14(1): e078989, 2024 01 12.
Article in English | MEDLINE | ID: mdl-38216200

ABSTRACT

INTRODUCTION: Uterine fibroids affect 30%-77% of reproductive-age women and are a significant cause of infertility. Surgical myomectomies can restore fertility, but they often have limited and temporary benefits, with postoperative complications such as adhesions negatively impacting fertility. Existing medical therapies, such as oral contraceptives, gonadotropin hormone-releasing hormone (GnRH) analogues and GnRH antagonists, can manage fibroid symptoms but are not fertility friendly. This study addresses the pressing need for non-hormonal, non-surgical treatment options for women with fibroids desiring pregnancy. Previous preclinical and clinical studies have shown that epigallocatechin gallate (EGCG) effectively reduces uterine fibroid size. We hypothesise that EGCG from green tea extract will shrink fibroids, enhance endometrial quality and increase pregnancy likelihood. To investigate this hypothesis, we initiated a National Institute of Child Health and Human Development Confirm-funded trial to assess EGCG's efficacy in treating women with fibroids and unexplained infertility. METHODS AND ANALYSIS: This multicentre, prospective, interventional, randomised, double-blinded clinical trial aims to enrol 200 participants with fibroids and unexplained infertility undergoing intrauterine insemination (IUI). Participants will be randomly assigned in a 3:1 ratio to two groups: green tea extract (1650 mg daily) or a matched placebo, combined with clomiphene citrate-induced ovarian stimulation and timed IUI for up to four cycles. EGCG constitutes approximately 45% of the green tea extract. The primary outcome is the cumulative live birth rate, with secondary outcomes including conception rate, time to conception, miscarriage rate, change in fibroid volume and symptom severity scores and health-related quality of life questionnaire scores. ETHICS AND DISSEMINATION: The FRIEND trial received approval from the Food and Drug adminstration (FDA) (investigational new drug number 150951), the central Institutional Review Board (IRB) at Johns Hopkins University and FRIEND-collaborative site local IRBs. The data will be disseminated at major conferences, published in peer-reviewed journals and support a large-scale clinical trial. TRIAL REGISTRATION NUMBER: NCT05364008.


Subject(s)
Catechin/analogs & derivatives , Infertility , Leiomyoma , Pregnancy , Child , Female , Humans , Tea , Quality of Life , Prospective Studies , Leiomyoma/complications , Leiomyoma/drug therapy , Leiomyoma/surgery , Infertility/therapy , Fertility , Ovulation Induction/methods , Gonadotropin-Releasing Hormone/therapeutic use , Pregnancy Rate , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
3.
Cell Signal ; 16(12): 1397-403, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15381255

ABSTRACT

Recently, it has been shown that PKA-mediated phosphorylation of the beta(2)-adrenergic receptor (beta(2)-AR) by the cyclic AMP-dependent protein kinase (PKA) reduces its affinity for G(s) and increases its affinity for G(i). Here we demonstrate that, like the beta(2)-AR, the beta(1)-AR is also capable of "switching" its coupling from G(s) to G(i) in a PKA-dependent manner. The beta(1)-AR is capable of activating adenylate cyclase via G(s), and can also activate the extracellular-regulated kinases, p44 and p42 (ERK1/2). In transfected CHO cells, the observed beta(1)-AR-mediated activation of ERK is both sensitive to pertussis toxin (PTX), indicating involvement of G(i)/G(o), and to the PKA inhibitor, H-89. beta(1)-ARs with PKA phosphorylation sites mutated to alanines are unable to activate ERK. Mutating these same residues to aspartic acid, mimicking PKA phosphorylation, leads to a decrease in G(s)-stimulated cAMP accumulation and an increase in PTX-sensitive ERK activation. These results strongly support the hypothesis that the beta(1)-AR, like the beta(2)-AR, can undergo PKA-dependent "G(s)/G(i) switching".


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , GTP-Binding Protein alpha Subunits, Gs/metabolism , Receptors, Adrenergic, beta-1/metabolism , Adenylyl Cyclases/metabolism , Animals , Binding Sites , CHO Cells , Cricetinae , Cyclic AMP/metabolism , Dose-Response Relationship, Drug , Enzyme Activation , Mutation , Phosphorylation , Plasmids/metabolism , Time Factors , Transcriptional Activation , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...