Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Photochem Photobiol B ; 256: 112941, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763078

ABSTRACT

Plants have a protective mechanism called non-photochemical quenching to prevent damage caused by excessive sunlight. A critical component of this mechanism is energy-dependent quenching (qE). In Chlamydomonas reinhardtii, the protein expression called light-harvesting complex stress-related protein 3 (LHCSR3) is crucial for the qE mechanism. LHCSR3 expression is observed in various conditions that result in photooxidation, such as exposure to high light or nutrient deprivation, where the amount of captured light surpasses the maximum photosynthetic capacity. Although the role of LHCSR3 has been extensively studied under high light (HL) conditions, its function during nutrient starvation remains unclear. In this study, we demonstrate that LHCSR3 expression can occur under light intensities below saturation without triggering qE, particularly when nutrients are limited. To investigate this, we cultivated C. reinhardtii cells under osmotic stress, which replicates conditions of nutrient scarcity. Furthermore, we examined the photosynthetic membrane complexes of wild-type (WT) and npq4 mutant strains grown under osmotic stress. Our analysis revealed that LHCSR3 expression might modify the interaction between the photosystem II core and its peripheral light-harvesting complex II antennae. This alteration could potentially impede the transfer of excitation energy from the antenna to the reaction center.


Subject(s)
Chlamydomonas reinhardtii , Light-Harvesting Protein Complexes , Osmotic Pressure , Photosystem II Protein Complex , Chlamydomonas reinhardtii/metabolism , Chlamydomonas reinhardtii/genetics , Light-Harvesting Protein Complexes/metabolism , Light-Harvesting Protein Complexes/genetics , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/genetics , Photosynthesis/radiation effects , Light , Chlorophyll/metabolism
2.
Front Microbiol ; 15: 1360650, 2024.
Article in English | MEDLINE | ID: mdl-38550867

ABSTRACT

In purple bacteria, photosynthesis is performed by densely packed pigment-protein complexes, including the light-harvesting complexes known as RC-LH1 and LH2, with carotenoids to assist in the functioning of photosynthesis. Most photosynthetic bacteria are exposed to various abiotic stresses such as light, temperature, alkalinity-acidity, and salinity. Rhodobacter (R.) alkalitolerans was discovered from the alkaline pond; here, we report the comparative study of the photosynthetic apparatus of R. alkalitolerans in various light intensities in relation to its high pH tolerance ability. With increased light intensity, the stability of photosystem complexes decreased in normal pH (npH pH 6.80 ± 0.05) conditions, whereas in high pH (hpH pH 8.60 ± 0.05), acclimation was observed to high light. The content of bacteriochlorophyll a, absorbance spectra, and circular dichroism data shows that the integrity of photosystem complexes is less affected in hpH compared with npH conditions. Large pore blue native polyacrylamide gel electrophoresis of photosystem protein complexes and sucrose density gradient of n-dodecyl ß-D-maltoside solubilized intracytoplasmic membranes show that LH2 is more affected in npH than in hpH, whereas RC-LH1 monomer or dimer has shown interplay between monomer and dimer in hpH, although the dimer and monomer both increased in npH. Increased content and expression level of ATPase protein complex and subunit-"c" of ATPase, fast relaxation kinetics of p515, and relatively higher membrane lipid content in hpH along with less photooxidative stress and subsequently lesser superoxide dismutase activity exemplify photoprotection in hpH. Furthermore, the increased expression levels of antiporter NhaD in hpH signify its role in the maintenance of homeostatic balance in hpH.

3.
Front Plant Sci ; 14: 1198474, 2023.
Article in English | MEDLINE | ID: mdl-37521924

ABSTRACT

Light and nutrients are essential components of photosynthesis. Activating the signaling cascades is critical in starting adaptive processes in response to high light. In this study, we have used wild-type (WT), cyclic electron transport (CET) mutants like Proton Gradient Regulation (PGR) (PGRL1), and PGR5 to elucidate the actual role in regulation and assembly of photosynthetic pigment-protein complexes under high light. Here, we have correlated the biophysical, biochemical, and proteomic approaches to understand the targeted proteins and the organization of thylakoid pigment-protein complexes in the photoacclimation. The proteomic analysis showed that 320 proteins were significantly affected under high light compared to the control and are mainly involved in the photosynthetic electron transport chain, protein synthesis, metabolic process, glycolysis, and proteins involved in cytoskeleton assembly. Additionally, we observed that the cytochrome (Cyt) b6 expression is increased in the pgr5 mutant to regulate proton motive force and ATPase across the thylakoid membrane. The increased Cyt b6 function in pgr5 could be due to the compromised function of chloroplast (cp) ATP synthase subunits for energy generation and photoprotection under high light. Moreover, our proteome data show that the photosystem subunit II (PSBS) protein isoforms (PSBS1 and PSBS2) expressed more than the Light-Harvesting Complex Stress-Related (LHCSR) protein in pgr5 compared to WT and pgrl1 under high light. The immunoblot data shows the photosystem II proteins D1 and D2 accumulated more in pgrl1 and pgr5 than WT under high light. In high light, CP43 and CP47 showed a reduced amount in pgr5 under high light due to changes in chlorophyll and carotenoid content around the PSII protein, which coordinates as a cofactor for efficient energy transfer from the light-harvesting antenna to the photosystem core. BN-PAGE and circular dichroism studies indicate changes in macromolecular assembly and thylakoid super-complexes destacking in pgrl1 and pgr5 due to changes in the pigment-protein complexes under high light. Based on this study, we emphasize that this is an excellent aid in understanding the role of CET mutants in thylakoid protein abundances and super-complex organization under high light.

4.
Plant Physiol Biochem ; 185: 144-154, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35696889

ABSTRACT

High temperature can induce a substantial adverse effect on plant photosynthesis. This study addressed the impact of moderately high temperature (35 °C) on photosynthetic efficiency and thylakoid membrane organization in Pisum sativum. The Chl a fluorescence curves showed a significant change, indicating a reduction in photosynthetic efficiency when pea plants were exposed to moderate high-temperature stress. The pulse-amplitude modulation measurements showed decreased non-photochemical quenching while the non-regulated energy dissipation increased in treated compared to control and recovery plants. Both parameters indicated that the photosystem (PS)II was prone to temperature stress. The PSI donor side limitation increased in treated and recovery plants compared to control, suggesting the donor side of PSI is hampered in moderate-high temperature. Further, the PSI acceptor side increased in recovery plants compared to control, suggesting that the cyclic electron transport is repressed after temperature treatment but revert back to normal in recovery conditions. Also, the content of photoprotective carotenoid pigments like lutein and xanthophylls increased in temperature-treated leaves. These results indicate the alteration of macro-organization of thylakoid membranes under moderately elevated temperature, whereas supercomplexes restored to the control levels under recovery conditions. Further, the light harvesting complex (LHC)II trimers, and monomers were significantly decreased in temperature-treated plants. Furthermore, the amount of PSII reaction center proteins D1, D2, PsbO, and Cyt b6 was reduced under moderate temperature, whereas the content of LHC proteins of PSI was stable. These observations suggest that moderately high temperature can alter supercomplexes, which leads to change in the pigment-protein organization.


Subject(s)
Pisum sativum , Thylakoids , Chlorophyll/metabolism , Light-Harvesting Protein Complexes/metabolism , Pisum sativum/metabolism , Photosynthesis , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Plant Leaves/metabolism , Temperature , Thylakoids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...