Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
BMC Plant Biol ; 24(1): 597, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38914943

ABSTRACT

Bacterial canker disease caused by Clavibacter michiganensis is a substantial threat to the cultivation of tomatoes, leading to considerable economic losses and global food insecurity. Infection is characterized by white raised lesions on leaves, stem, and fruits with yellow to tan patches between veins, and marginal necrosis. Several agrochemical substances have been reported in previous studies to manage this disease but these were not ecofriendly. Thus present study was designed to control the bacterial canker disease in tomato using green fabricated silver nanoparticles (AgNps). Nanosilver particles (AgNPs) were synthesized utilizing Moringa oleifera leaf extract as a reducing and stabilizing agent. Synthesized AgNPs were characterized using UV-visible spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and Fourier transform infrared spectrometry (FTIR). FTIR showed presence of bioactive compounds in green fabricated AgNPs and UV-visible spectroscopy confirmed the surface plasmon resonance (SPR) band in the range of 350 nm to 355 nm. SEM showed the rectangular segments fused together, and XRD confirmed the crystalline nature of the synthesized AgNPs. The presence of metallic silver ions was confirmed by an EDX detector. Different concentrations (10, 20, 30, and 40 ppm) of the green fabricated AgNPs were exogenously applied on tomato before applying an inoculum of Clavibacter michigensis to record the bacterial canker disease incidence at different day intervals. The optimal concentration of AgNPs was found to be 30 µg/mg that exhibited the most favorable impact on morphological (shoot length, root length, plant fresh and dry weights, root fresh and dry weights) and physiological parameters (chlorophyll contents, membrane stability index, and relative water content) as well as biochemical parameters (proline, total soluble sugar and catalase activity). These findings indicated a noteworthy reduction in biotic stress through the increase of both enzymatic and non-enzymatic activities by the green fabricated AgNPs. This study marks a first biocompatible approach in assessing the potential of green fabricated AgNPs in enhancing the well-being of tomato plants that affected with bacterial canker and establishing an effective management strategy against Clavibacter michiganensis. This is the first study suggests that low concentration of green fabricated nanosilvers (AgNPs) from leaf extract of Moringa oleifera against Clavibacter michiganensis is a promisingly efficient and eco-friendly alternative approach for management of bacterial canker disease in tomato crop.


Subject(s)
Metal Nanoparticles , Plant Diseases , Silver , Solanum lycopersicum , Solanum lycopersicum/microbiology , Silver/pharmacology , Metal Nanoparticles/chemistry , Plant Diseases/microbiology , Clavibacter , Moringa oleifera/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Green Chemistry Technology , Plant Leaves/microbiology
2.
BMC Plant Biol ; 24(1): 606, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926658

ABSTRACT

Early season carrot (Daucus carota) production is being practiced in Punjab, Pakistan to meet the market demand but high temperature hampers the seed germination and seedling establishment which cause marked yield reduction. Seed priming with potassium nitrate breaks the seed dormancy and improves the seed germination and seedling growth potential but effects vary among the species and ecological conditions. The mechanism of KNO3 priming in high temperature stress tolerance is poorly understood yet. Thus, present study aimed to evaluate high temperature stress tolerance potential of carrot seeds primed with potassium nitrate and impacts on growth, physiological, and antioxidant defense systems. Carrot seeds of a local cultivar (T-29) were primed with various concentration of KNO3 (T0: unprimed (negative control), T1: hydroprimed (positive control), T2: 50 mM, T3:100mM, T4: 150 mM, T5: 200 mM, T6: 250 mM and T7: 300 mM) for 12 h each in darkness at 20 ± 2℃. Seed priming with 50 mM of KNO3 significantly enhanced the seed germination (36%), seedling growth (28%) with maximum seedling vigor (55%) and also exhibited 16.75% more carrot root biomass under high temperature stress as compared to respective control. Moreover, enzymatic activities including peroxidase, catalase, superoxidase dismutase, total phenolic contents, total antioxidants contents and physiological responses of plants were also improved in response to seed priming under high temperature stress. By increasing the level of KNO3, seed germination, growth and root biomass were reduced. These findings suggest that seed priming with 50 mM of KNO3 can be an effective strategy to improve germination, growth and yield of carrot cultivar (T-29) under high temperature stress in early cropping. This study also proposes that KNO3 may induces the stress memory by heritable modulations in chromosomal structure and methylation and acetylation of histones that may upregulate the hormonal and antioxidant activities to enhance the stress tolerance in plants.


Subject(s)
Antioxidants , Daucus carota , Germination , Nitrates , Potassium Compounds , Seedlings , Seeds , Antioxidants/metabolism , Seedlings/growth & development , Seedlings/drug effects , Seedlings/physiology , Nitrates/metabolism , Nitrates/pharmacology , Seeds/drug effects , Seeds/growth & development , Seeds/physiology , Daucus carota/growth & development , Daucus carota/drug effects , Daucus carota/physiology , Potassium Compounds/pharmacology , Germination/drug effects , Hot Temperature
3.
Biochim Biophys Acta Gen Subj ; 1868(8): 130651, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38825256

ABSTRACT

Cannabidiol (CBD) has antioxidant and anti-inflammatory activities. However, the anti-tumor effect of CBD on hepatocellular carcinoma (HCC) remains unclear. Here, we investigated whether CBD displays anti-tumorigenic effects in HCC cells and whether it could reduce tumorigenesis and metastases in vivo. First, this study treated HCC cells with different concentrations of CBD, followed by analyzing the changes in the proliferative, apoptotic, migratory and invasive abilities. The effects of CBD on the growth and metastasis of HCC cells in vivo were verified by tumorigenesis and metastasis assays. Subsequently, the target genes of CBD were predicted through the SwissTarget website and the genes differentially expressed in cells after CBD treatment were analyzed by microarray for intersection. The enrichment of the pathways after CBD treatment was analyzed by KEGG enrichment analysis, followed by western blot validation. Finally, rescue assays were used to validate the functions of genes as well as pathways in the growth and metastasis of HCC cells. A significant weakening of the ability of HCC cells to grow and metastasize in vitro and in vivo was observed upon CBD treatment. Mechanistically, CBD reduced GRP55 expression in HCC cells, along with increased TP53 expression and blocked MAPK signaling activation. In CBD-treated cells, the anti-tumor of HCC cells was restored after overexpression of GRP55 or deletion of TP53. CBD inhibits the MAPK signaling activation and increases the TP53 expression by downregulating GRP55 in HCC cells, thereby suppressing the growth and metastasis of HCC cells.


Subject(s)
Cannabidiol , Carcinoma, Hepatocellular , Liver Neoplasms , Receptors, Cannabinoid , Tumor Suppressor Protein p53 , Cannabidiol/pharmacology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Humans , Tumor Suppressor Protein p53/metabolism , Receptors, Cannabinoid/metabolism , Receptors, Cannabinoid/genetics , Animals , Cell Proliferation/drug effects , Cell Line, Tumor , Mice , Gene Expression Regulation, Neoplastic/drug effects , MAP Kinase Signaling System/drug effects , Apoptosis/drug effects , Cell Movement/drug effects , Phenotype , Mice, Nude
4.
Plant Physiol Biochem ; 213: 108807, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38905730

ABSTRACT

The aim of this work was to investigate the impact of nano selenium (N-Se) and compost on the growth, photosynthesis, enzymes activity, compatible solutes and metals accumulation in soybean grown under tannery effluent polluted soil. The plants were exposed to compost application (no compost and compost addition) and foliar application of N-Se (0, 25, 50, and 75 mg L-1). The results showed the addition of compost in soil and foliar applied N-Se alleviated the toxic effect of tannery effluent polluted soil. Furthermore, foliar application of N-Se with basal compost supply significantly improved antoxidant enzymes activity in soybean grown in tannery effluent polluted soil. Addition of compost increased the root dry weight (46.43%) and shoot dry weight (33.50 %), relative water contents by (13.74 %), soluble sugars (15.99 %), stomatal conductance (gs) (83.33 %), intercellular CO2 concentration (Ci) (23.34 %), transpiration rate (E) (12.10 %) and decreased the electrolyte leakage (27.96 %) and proline contents by (20.34 %). The foliage application of N-Se at the rate of 75 mg L-1 showed the most promising results in control and compost amended tannery effluent polluted soil. The determined health risk index (HRI) values were recorded less than 1 for both adults and children under the application of compost and N-Se. In summary, the combined use of N-Se at 75 mg L⁻1 and basal supply of compost is an effective strategy for enhancing soybean productivity while minimizing the potential risks of metal accumulation in soybean grains grown in tannery effluent polluted soil.


Subject(s)
Antioxidants , Composting , Glycine max , Selenium , Soil Pollutants , Glycine max/metabolism , Glycine max/drug effects , Glycine max/growth & development , Soil Pollutants/metabolism , Selenium/metabolism , Antioxidants/metabolism , Photosynthesis/drug effects , Soil/chemistry , Tanning , Industrial Waste
5.
Microsc Res Tech ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38706433

ABSTRACT

Traditional medicinal plants play an important role in primary health care worldwide. The phytochemical screening and activities of Geranium pusillum were investigated in this research. The dried plant leaves were extracted with ethanol, n-hexane, chloroform, dichloromethane, methanol, acetone, and aqueous solvents. These extracts were qualitatively analyzed, GC-MS, antimicrobial activities by using the disc diffusion method, antioxidant activity was determined by 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical scavenging, and cytotoxic activity was analyzed by the hemolytic activity of human red blood cells. The results showed phytochemicals such as flavonoids, terpenoids, steroids, phenols, saponins, tannins, and cardiac glycosides were detected in plant leaves. The ethanol extract at a concentration of 10 mg/mL showed a maximum inhibition zone 17.5 ± 0.09, 15.6 ± 0.11, 14.2 ± 0.17, 18.4 ± 0.11, 16.6 ± 0.15, 12.5 ± 0.13, 15.9 ± 0.10, and 13.1 ± 0.11 mm, and at 15 mg/mL showed 24.5 ± 0.09, 27.2 ± 0.12, 26.3 ± 0.17, 28.4 ± 0.10, 27.9 ± 0.16, 22.5 ± 0.13, 27.1 ± 0.10, and 24.1 ± 0.16 mm against Escherichia coli, Pasturella multocida (gram-negative), Staphylococcus aureus, Bacillus subtilus (gram-positive), Rhizopus solani, Aspergillus flavus, Aspergillus niger, and Alternaria alternate (fungal strain), respectively, and dichloromethane showed a minimum inhibition zone as compared to other extracts against bacterial as well as fungal strains. Chloroform extract had maximum antioxidant activity (45.00 ± 0.08%) and minimum in dichloromethane (12.20 ± 0.04%). Cytotoxic activity was found maximum in acetone extract (19.83 ± 0.07%) and minimum in ethanol extract (4.72 ± 0.04%). It is concluded that phytochemicals like phenols, flavonoids, and others may be responsible for these activities, which is why this plant is used for traditional medicine. RESEARCH HIGHLIGHTS: Geranium pusillum has therapeutic properties that exhibit various biological activities beneficial for human health. G. pusillum has significant inhibitory effects against bacterial and fungal strains. Chloroform solvent extract indicates potential free radical scavenging abilities. Acetone extract exhibits notable effects on human red blood cells and demonstrates significant cytotoxic activity.

6.
Int J Phytoremediation ; : 1-13, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745404

ABSTRACT

Soil contamination with chromium (Cr) is becoming a primary ecological and health concern, specifically in the Kasur and Sialkot regions of Pakistan. The main objective of the current study was to evaluate the impact of foliar application of zinc oxide nanoparticles (ZnO NPs) (0, 25, 50, 100 mg L-1) and Fe NPs (0, 5, 10, 20 mg L-1) in red sails lettuce plants grown in Cr-contaminated soil. Our results showed that both ZnO and Fe NPs improved plant growth, and photosynthetic attributes by minimizing oxidative stress in lettuce plants through the stimulation of antioxidant enzyme activities. At ZnO NPs (100 mgL-1), dry weights of shoots and roots and fresh weights of shoots and roots were improved by 53%, 58%, 34%, and 45%, respectively, as compared to the respective control plants. The Fe NPs treatment (20 mgL-1) increased the dry weight of shoots and the roots and fresh weights of shoots and roots by 53%, 76%, 42%, and 70%, respectively. Application of both NPs reduced the oxidative stress caused by Cr, as evident by the findings of the current study, i.e., at the ZnO NPs (100 mgL-1) and Fe NPs (20 mgL-1), the EL declined by 32% and 44%, respectively, in comparison with respective control plants. Moreover, Fe and ZnO NPs enhanced the Fe and Zn contents in red sails lettuce plants. Application of ZnO NPs at 100 mg L-1 and Fe NPs at 20 mg L-1, improved the Zn and Fe contents in plant leaves by 86%, and 68%, respectively, as compared to the control plants. This showed that the exogenous application of these NPs helped in Zn and Fe fortification in plants. At similar of concenteration ZnO NPs, CAT and APX activities were improved by 52% and 53%, respectively. Similarly, the POD contents were improved by 17% and 45% at 5 and 10 mg/L of Fe NPs. Furthermore, ZnO and Fe NPs limited the Cr uptake by plants, and the concentration of Cr in the leaves of lettuce was under the threshold limit. The exogenous application of ZnO NPs (100 mg L-1) and Fe NPs (20 mg L-1) reduced the Cr uptake in the leaves of red sails lettuce by 57% and 51%, respectively. In conclusion, ZnO and Fe NPs could be used for the improvement of plant growth and biomass as well as nutrient fortification in stressed environments. These findings not only underscore the efficacy of nanoparticle-assisted phytoremediation but also highlight its broader implications for sustainable agriculture and environmental health. However, future studies on other crops with molecular-level investigations are recommended for the validation of the results.


ZnO and Fe NPs improved the growth and photosynthesis of red sails lettuce plantsBoth NPs enhanced antioxidants enzymes activities in stressed plantsNPs mediated response reduced the oxidative stress and Cr uptake in red sails lettuceZnO and Fe NPs resulted in Zn and Fe fortification, respectively, in red sails lettuce.

7.
Water Environ Res ; 95(12): e10952, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38148734

ABSTRACT

BACKGROUND: Tannery wastewater effluents contain many toxic and carcinogenic heavy metals and physiochemical parameters that need to be removed before these effluents enter in the main water bodies or rivers. In this study, the effluents from the tannery industry are treated through aeration, coagulation, and Chlorella vulgaris pond treatment processes for the removal of physiochemical: parameters only. METHODS: The effect of removal efficiencies (%) was studied on the physicochemical parameters, including salinity, electrical conductivity (EC), total dissolved solids (TDS), turbidity, total suspended solids (TSS), biochemical oxygen demand (BOD), and chemical oxygen demand (COD). RESULTS: The key results showed that the removal of EC, TDS, turbidity, TSS, BOD, and COD was 80.2%, 67%, 81%, 80.8%, 68.6%, and 100%, respectively, in raw wastewater treatment having 25, 50, and 70 g of algae C. vulgaris doses. The removal efficiencies (%) of salinity, EC, TDS, turbidity, TSS, BOD, and COD were 83%, 87.1%, 77.1%, 80%, 40%, 97%, and 98%, respectively, during coagulated wastewater treatment with three doses of algae. The observed improvement in treated wastewater indicated that the removal efficiencies (%) of salinity, EC, TDS, turbidity, TSS, BOD, and COD were 85.7%, 39.3%, 81.3%, 67.8%, 50.3%, 97%, and 98%, with C. vulgaris. CONCLUSION: This study confirmed that the treatment of tannery wastewater by these processes increased the pollutant removal efficiencies as all the physiochemical parameters were exceeding the permissible limits. RESULTS CONTRIBUTION IN FUTURE: This research will be helpful to treat the industrial wastewaters or effluents before it further mixes up in the main water streams. In this way, water quality will be better, aquatic life will be saved, and further researchers can analyze more ways for efficient treatments as they have a baseline data through this study findings. PRACTITIONER POINTS: One of the most pollutant sources in terms of both physical and chemical parameters is the produced wastewater from tannery industries. The effluents from tannery industry are treated through aeration, coagulation, and algae ponds treatment processes. These treatment made the tannery wastewater as environmental friendly.


Subject(s)
Chlorella vulgaris , Environmental Pollutants , Wastewater , Ponds , Biological Oxygen Demand Analysis
8.
PeerJ ; 11: e15821, 2023.
Article in English | MEDLINE | ID: mdl-37780391

ABSTRACT

Background: Chemical mutagenesis has been successfully used for increasing genetic diversity in crop plants. More than 800 novel mutant types of rice (Oryza sativa L.) have been developed through the successful application of numerous mutagenic agents. Among a wide variety of chemical mutagens, ethyl-methane-sulfonate (EMS) is the alkylating agent that is most commonly employed in crop plants because it frequently induces nucleotide substitutions as detected in numerous genomes. Methods: In this study, seeds of the widely consumed Basmati rice variety (Super Basmati, Oryza sativa L.) were treated with EMS at concentrations of 0.25%, 0.50%, 0.75%, 1.0%, and 1.25% to broaden its narrow genetic base. Results: Sensitivity to a chemical mutagen such as ethyl methanesulfonate (EMS) was determined in the M1 generation. Results in M1 generation revealed that as the levels of applied EMS increased, there was a significant reduction in the germination percent, root length, shoot length, plant height, productive tillers, panicle length, sterile spikelet, total spikelet, and fertility percent as compared to the control under field conditions. All the aforementioned parameters decreased but there was an increase in EMS mutagens in an approximately linear fashion. Furthermore, there was no germination at 1.25% of EMS treatment for seed germination. A 50% germination was recorded between 0.50% and 0.75% EMS treatments. After germination, the subsequent parameters, viz. root length and shoot length had LD50 between 05.0% and 0.75% EMS dose levels. Significant variation was noticed in the photosynthetic and water related attributes of fragrant rice. The linear increase in the enzymatic attributes was noticed by the EMS mediated treatments. After the establishment of the plants in the M1 generation in the field, it was observed that LD50 for fertility percentage was at EMS 1.0% level, for the rice variety. Conclusion: Hence, it is concluded that for creating genetic variability in the rice variety (Super Basmati), EMS doses from 0.5% to 0.75% are the most efficient, and effective.


Subject(s)
Oryza , Ethyl Methanesulfonate/pharmacology , Oryza/genetics , Mutation , Mutagens/toxicity , Mutagenesis
9.
Plant Physiol Biochem ; 203: 108036, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37738866

ABSTRACT

Salt stress has emerged as a growing global concern, exerting a significant impact on agricultural productivity. The challenges of salt stress on potatoes are crucial for ensuring food security and sustainable agriculture. To address this issue a pot trial was executed to evaluate the impacts of NaCl in the soil on the growth, photosynthetic pigments, and quality attributes of potato, plants were grown in soil spiked with various concentrations of NaCl (0, 1, 3, 5, 7 g kg-1 of soil). Results revealed that salt stress have negative impacts on the growth, biomass, photosynthesis and quality attributes of potato. Lower level of salt stress 1 g kg-1 of soil improved the fresh and dry biomass of leaves (78.70 and 47.74%) and tubers (86.04 and 88.92%) as compared to control, respectively. Higher levels of salt stress (7 g kg-1) increased lipid peroxidation in leaves and improved the enzymatic antioxidants. It was observed that enzyme activities i.e., SOD (134.97%), POD (101.02%), and CAT (28.87%) increased in leaves and are inversely related to the NaCl concentration. The combination of reduction in chlorophyll contents and soluble sugars resulted in lower levels of quality attributes i.e., amylose (68.90%) and amylopectin (16.70%) of potato. Linear relationship in growth, biomass and physiological attributes showed the strong association with increased salt stress. Furthermore, the PCA-heatmap synergy offers identifying clusters of co-regulated attributes, which pinpoint the physiological responses that exhibit the strongest correlation with increasing salt stress levels. Findings indicate that potato can be grown successfully with (1 g kg-1 of NaCl in soil) without negative impacts on plant quality. Furthermore, this study contributes valuable insights into the complexities of salt stress on potato plants and provides a foundation for developing strategies to enhance their resilience in salt-affected environments.

10.
BMC Plant Biol ; 23(1): 395, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37592226

ABSTRACT

BACKGROUND: One of the most important cash crops worldwide is rice (Oryza sativa L.). Under varying climatic conditions, however, its yield is negatively affected. In order to create rice varieties that are resilient to abiotic stress, it is essential to explore the factors that control rice growth, development, and are source of resistance. HSFs (heat shock transcription factors) control a variety of plant biological processes and responses to environmental stress. The in-silico analysis offers a platform for thorough genome-wide identification of OsHSF genes in the rice genome. RESULTS: In this study, 25 randomly dispersed HSF genes with significant DNA binding domains (DBD) were found in the rice genome. According to a gene structural analysis, all members of the OsHSF family share Gly-66, Phe-67, Lys-69, Trp-75, Glu-76, Phe-77, Ala-78, Phe-82, Ile-93, and Arg-96. Rice HSF family genes are widely distributed in the vegetative organs, first in the roots and then in the leaf and stem; in contrast, in reproductive tissues, the embryo and lemma exhibit the highest levels of gene expression. According to chromosomal localization, tandem duplication and repetition may have aided in the development of novel genes in the rice genome. OsHSFs have a significant role in the regulation of gene expression, regulation in primary metabolism and tolerance to environmental stress, according to gene networking analyses. CONCLUSION: Six genes viz; Os01g39020, Os01g53220, Os03g25080, Os01g54550, Os02g13800 and Os10g28340 were annotated as promising genes. This study provides novel insights for functional studies on the OsHSFs in rice breeding programs. With the ultimate goal of enhancing crops, the data collected in this survey will be valuable for performing genomic research to pinpoint the specific function of the HSF gene during stress responses.


Subject(s)
Oryza , Oryza/genetics , Heat Shock Transcription Factors/genetics , Plant Breeding , Crops, Agricultural , Gene Regulatory Networks
11.
Microorganisms ; 11(4)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37110309

ABSTRACT

Tomato plants are among the most widely cultivated and economically important crops worldwide. Farmers' major challenge when growing tomatoes is early blight disease caused by Alternaria solani, which results in significant yield losses. Silver nanoparticles (AgNPs) have gained popularity recently due to their potential antifungal activity. The present study investigated the potential of green synthesized silver nanoparticles (AgNPs) for enhancing the growth and yield of tomato plants and their resistance against early blight disease. AgNPs were synthesized using leaf extract of the neem tree. Tomato plants treated with AgNPs showed a significant increase in plant height (30%), number of leaves, fresh weight (45%), and dry weight (40%) compared to the control plants. Moreover, the AgNP-treated plants exhibited a significant reduction in disease severity index (DSI) (73%) and disease incidence (DI) (69%) compared to the control plants. Tomato plants treated with 5 and 10 ppm AgNPs reached their maximum levels of photosynthetic pigments and increased the accumulation of certain secondary metabolites compared to the control group. AgNP treatment improved stress tolerance in tomato plants as indicated by higher activities of antioxidant enzymes such as PO (60%), PPO (65%), PAL (65.5%), SOD (65.3%), CAT (53.8%), and APX (73%). These results suggest that using green synthesized AgNPs is a promising approach for enhancing the growth and yield of tomato plants and protecting them against early blight disease. Overall, the findings demonstrate the potential of nanotechnology-based solutions for sustainable agriculture and food security.

12.
Plants (Basel) ; 12(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37050205

ABSTRACT

The therapeutical attributes of silver nanoparticles (Ag-NPs) in both conditions (in vitro and in vivo) have been investigated using different plants. This study focused on the green chemistry approach that was employed to optimize the synthesis of silver nanoparticles (AgNPs) using Cleome brachycarpa aqueous extract as a reducing and stabilizing agent. The characterization of obtained CB-AgNPs was undertaken using UV-visible spectroscopy, Atomic-force microscopy (AFM), Fourier-Transform Infrared Spectroscopy (FTIR), scanning electron microscopy (SEM), and Energy-Dispersive X-ray (EDX) analysis. Results suggest that CB-AgNPs synthesized via stirring produced small-sized particles with more even distribution. The synthesized silver nanoparticles were spherical with a 20 to 80 nm size range. In vitro studies were used to analyze antioxidant, antidiabetic, and cytotoxic potential under different conditions. The results also indicated that CB-AgNPs may have significant potential as an antidiabetic in low concentrations, but also exhibited potential antioxidant activity at different concentrations. Moreover, the anticancer activity against the breast cell line (MCF-7) with IC50 reached up to 18 µg/mL. These results suggest that green synthesized silver nanoparticles provide a promising phytomedicine for the management of diabetes and cancer therapeutics.

13.
Article in English | MEDLINE | ID: mdl-36834443

ABSTRACT

The diseases transmitted through vectors such as mosquitoes are named vector-borne diseases (VBDs), such as malaria, dengue, and leishmaniasis. Malaria spreads by a vector named Anopheles mosquitos. Dengue is transmitted through the bite of the female vector Aedes aegypti or Aedes albopictus mosquito. The female Phlebotomine sandfly is the vector that transmits leishmaniasis. The best way to control VBDs is to identify breeding sites for their vectors. This can be efficiently accomplished by the Geographical Information System (GIS). The objective was to find the relation between climatic factors (temperature, humidity, and precipitation) to identify breeding sites for these vectors. Our data contained imbalance classes, so data oversampling of different sizes was created. The machine learning models used were Light Gradient Boosting Machine, Random Forest, Decision Tree, Support Vector Machine, and Multi-Layer Perceptron for model training. Their results were compared and analyzed to select the best model for disease prediction in Punjab, Pakistan. Random Forest was the selected model with 93.97% accuracy. Accuracy was measured using an F score, precision, or recall. Temperature, precipitation, and specific humidity significantly affect the spread of dengue, malaria, and leishmaniasis. A user-friendly web-based GIS platform was also developed for concerned citizens and policymakers.


Subject(s)
Aedes , Communicable Diseases , Dengue , Malaria , Vector Borne Diseases , Animals , Humans , Mosquito Vectors/physiology , Malaria/epidemiology , Aedes/physiology , Dengue/epidemiology
14.
Article in English | MEDLINE | ID: mdl-36231427

ABSTRACT

Rice has been a dietary staple for centuries, providing vital nutrients to the human body. Brown rice is well known for its nutrient-dense food profile. However, owing to multiple causes (anthropogenic and non-anthropogenic), it can also be a potential source of toxic heavy metals in the diet. Brown Hassawi rice samples were collected from the Al-Ahsa region and analyzed for its content of toxic metals. The results reveal that all the tested metals varied significantly in the brown rice samples, while As and Pb in all three samples exceeded their respective maximum allowable limits (MALs), followed by Cd, which nearly approached the MAL in two samples out of three. Brown rice samples were cooked in rice:water systems, viz., low rice:water ratios (1:2.5, 1:3.5) and high rice:water ratios (1:5, 1:6), along with soaking as a pre-treatment. Soaking was unproductive in removing the heavy metals from the rice, whereas cooking dissipated all metals from the rice, except for Cd, which was statistically non-significant. The high-water cooking of the rice was more effective in the dissipation of metals from the rice as compared to low-water cooking conditions. Through the consumption of rice, the estimated daily intake (EDI) of heavy metals is 162 g per person per day for As, which is above the provisional maximum tolerable daily intake (PMTDI) regardless of cooking circumstances. The hazard risk index (HRI) also highlighted the fact that As can be a potential health hazard to rice consumers in the Al-Ahsa region of Saudi Arabia. These results indicate the potential health risks caused by the consumption of this rice by humans. Regular monitoring is recommended to manage and control elevated concentrations and related health hazards as a result of the use of Hassawi rice contaminated by the accumulation of metals and metalloids.


Subject(s)
Metalloids , Metals, Heavy , Oryza , Soil Pollutants , Cadmium/analysis , Cooking/methods , Environmental Monitoring , Food Contamination/analysis , Heavy Metal Poisoning , Humans , Lead , Metals, Heavy/analysis , Risk Assessment , Soil Pollutants/analysis , Water
15.
Life (Basel) ; 12(10)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36294913

ABSTRACT

Agricultural soil quality degradation by potentially toxic elements, specifically cadmium (Cd), poses a significant threat to plant growth and the health of humans. However, the supplementation of various salts of silicon (Si) to mitigate the adverse effect of Cd on the productivity of peas (Pisum sativum L.) is less known. Therefore, the present investigation was designed to evaluate the exogenous application at various levels (0, 0.50, 1.00 and 1.50 mM) of silicate compounds (sodium and potassium silicates) on pea growth, gaseous exchange, antioxidant enzyme activities and the potential health risk of Cd stress (20 mg kg-1 of soil) using CdCl2. The findings of the study showed that Cd stress significantly reduced growth, the fresh and dry biomass of roots and shoots and chlorophyll content. In addition, electrolyte leakage, antioxidant enzymes and the content of Cd in plant tissues were enhanced in Cd-induced stressed plants. An application of Si enhanced the development of stressed plants by modulating the growth of fresh and dry biomass, improving the chlorophyll contents and decreasing leakage from the plasma membrane. Furthermore, Si addition performed a vital function in relieving the effects of Cd stress by stimulating antioxidant potential. Hence, a significant level of metal protection was achieved by 1.00 mM of potassium silicate application under the Cd levels related to stress conditions, pointing to the fact that the Si concentration required for plant growth under Cd stress surpassed that which was required for general growth, enzymatic antioxidants regulation and limiting toxic metal uptake in plant tissues under normal conditions. The findings of this research work provide a feasible approach to reduce Cd toxicity in peas and to manage the entry and accumulation of Cd in food crops.

16.
Life (Basel) ; 12(9)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36143396

ABSTRACT

The reduction of herbicide use and herbicide-resistant weeds through allelopathy can be a sustainable strategy to combat the concerns of environmental degradation. Allelopathic crop residues carry great potential both as weed suppressers and soil quality enhancers. The influence of sorghum crop residues and water extracts on the weed population, soil enzyme activities, the microbial community, and mung bean crop productivity was investigated in a two-year experiment at the Student Research Farm, University of Agriculture Faisalabad. The experimental treatments comprised two levels of sorghum water extract (10 and 20 L ha-1) and two residue application rates (4 and 6 t ha-1), and no sorghum water extract and residues were used as the control. The results indicated that the incorporation of sorghum water extract and residue resulted in significant changes in weed dynamics and the soil quality indices. Significant reduction in weed density (62%) and in the dry weight of weeds (65%) was observed in T5. After the harvest, better soil quality indices in terms of the microbial population (72-90%) and microbial activity (32-50%) were observed in the rhizosphere (0-15 cm) by the same treatment. After cropping, improved soil properties in terms of available potassium, available phosphorus soil organic matter, and total nitrogen were higher after the treatment of residue was incorporated, i.e., 52-65%, 29-45%, 62-84%, and 59-91%, respectively. In the case of soil enzymes, alkaline phosphatase and dehydrogenase levels in the soil were 35-41% and 52-77% higher, respectively. However, residue incorporation at 6 t ha-1 had the greatest effect in improving the soil quality indices, mung bean productivity, and reduction of weed density. In conclusion, the incorporation of 6 t ha-1 sorghum residues may be opted to improve soil quality indices, suppress weeds, harvest a better seed yield (37%), and achieve higher profitability (306 $ ha-1) by weed suppression, yield, and rhizospheric properties of spring-planted mung beans. This strategy can provide a probable substitute for instigating sustainable weed control and significant improvement of soil properties in the mung bean crop, which can be a part of eco-friendly and sustainable agriculture.

17.
PLoS One ; 17(6): e0267939, 2022.
Article in English | MEDLINE | ID: mdl-35679266

ABSTRACT

Plant growth and productivity are limited by the severe impact of salt stress on the fundamental physiological processes. Silicon (Si) supplementation is one of the promising techniques to improve the resilience of plants under salt stress. This study deals with the response of exogenous Si applications (0, 2, 4, and 6 mM) on growth, gaseous exchange, ion homeostasis and antioxidant enzyme activities in spinach grown under saline conditions (150 mM NaCl). Salinity stress markedly reduced the growth, physiological, biochemical, water availability, photosynthesis, enzymatic antioxidants, and ionic status in spinach leaves. Salt stress significantly enhanced leaf Na+ contents in spinach plants. Supplementary foliar application of Si (4 mM) alleviated salt toxicity, by modulating the physiological and photosynthetic attributes and decreasing electrolyte leakage, and activities of SOD, POD and CAT. Moreover, Si-induced mitigation of salt stress was due to the depreciation in Na+/K+ ratio, Na+ ion uptake at the surface of spinach roots, and translocation in plant tissues, thereby reducing the Na+ ion accumulation. Foliar applied Si (4 mM) ameliorates ionic toxicity by decreasing Na+ uptake. Overall, the results illustrate that foliar applied Si induced resistance against salinity stress in spinach by regulating the physiology, antioxidant metabolism, and ionic homeostasis. We advocate that exogenous Si supplementation is a practical approach that will allow spinach plants to recover from salt toxicity.


Subject(s)
Salinity , Silicon , Antioxidants/metabolism , Fertilization , Silicon/metabolism , Silicon/pharmacology , Sodium/metabolism , Spinacia oleracea/metabolism
18.
Molecules ; 27(8)2022 04 07.
Article in English | MEDLINE | ID: mdl-35458576

ABSTRACT

The use of complementary herbal medicines has recently increased in an attempt to find effective alternative therapies that reduce the adverse effects of chemical drugs. Portulacaria afra is a rich source of phytochemicals with high antioxidant activity, and thus may possess health benefits. This study used the latest developments in GC-MS coupling with molecular docking techniques to identify and quantify the phytoconstituents in P. afra tissue extracts. The results revealed that n-butanol P. afra (BUT-PA) dry extracts contained total phenolic and flavonoids contents of 21.69 ± 0.28 mgGAE/g and 196.58 ± 6.29 mgGAE/g, respectively. The significant potential of antioxidants was observed through CUPRIC, FRAP, and ABTS methods while the DPPH method showed a moderate antioxidants potential for P. afra. Enzymatic antioxidants, superoxide dismutase, peroxidase and catalase also showed a better response in the BUT-PA dry extracts. The thrombolytic activity of the BUT-PA extracts ranged from 0.4 ± 0.32 to 11.2 ± 0.05%. Similarly, hemolytic activity ranged from 5.76 ± 0.15 to 9.26 ± 0.15% using the standard (triton x) method. The BUTPA and CHPA showed moderate acetylcholinesterase and butrylcholinesterase inhibition, ranging from 40.78 ± 0.52 to 58.97 ± 0.33, compared to galantamine. The carrageenan induced hind-paw edema assay, while BUT-PA extracts showed anti-inflammatory properties in a dose-dependent manner. Furthermore, 20 compounds were identified in the BUTPA extracts by GC-MS. Molecular docking was performed to explore the synergistic effect of the GC-MS-identified compounds on COX-1 and COX-2 inhibition. A high binding affinity was observed for Stigmastan-3, 5-diene, Phthalic acid, 3. Alpha-Hydroxy-5, 16-androstenol. The computed binding energies of the compounds revealed that all the compounds have a synergistic effect, preventing inflammation. It was concluded that active phytochemicals were present in P. afra, with the potential for multiple pharmacological applications as a latent source of pharmaceutically important compounds. This should be further explored to isolate secondary metabolites that can be employed in the treatment of different diseases.


Subject(s)
Antioxidants , Caryophyllales , Acetylcholinesterase , Anti-Inflammatory Agents/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Molecular Docking Simulation , Phytochemicals/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology
19.
Front Plant Sci ; 13: 1079283, 2022.
Article in English | MEDLINE | ID: mdl-36714745

ABSTRACT

Abiotic stress, particularly drought, will remain an alarming challenge for sustainable agriculture. New approaches have been opted, such as nanoparticles (NPs), to reduce the negative impact of drought stress and lessen the use of synthetic fertilizers and pesticides that are an inevitable problem these days. The application of zinc oxide nanoparticles (ZnO NPs) has been recognized as an effective strategy to enhance plant growth and crop production during abiotic stress. The aim of the current study was to investigate the role of ZnO NPs in drought stress management of drought-susceptible Coriandrum sativum L. (C. sativum) in two consecutive seasons. Drought regimes (moderate drought regime-MDR and intensive drought regime-IDR) were developed based on replenishment method with respect to 50% field capacity of fully irrigated (control) plants. The results showed that foliar application of 100 ppm ZnO NPs improved the net photosynthesis (Pn), stomatal conductance (C), and transpiration rate (E) and boosted up the photosynthetic capacity associated with photosynthetic active radiation in MDR. Similarly, 48% to 30% improvement of chlorophyll b content was observed in MDR and onefold to 41% in IDR during both seasons in ZnO NP-supplemented plants. The amount of abscisic acid in leaves showed a decreasing trend in MDR and IDR in the first season (40% and 30%) and the second season (49% and 33%) compared with untreated ZnO NP plants. The ZnO NP-treated plants showed an increment in total soluble sugars, total phenolic content, and total flavonoid content in both drought regimes, whereas the abaxial surface showed high stomatal density and stomatal index than the adaxial surface in foliar-supplied NP plants. Furthermore, ZnO NPs improve the magnitude of stomata ultrastructures like stomatal length, stomatal width, and pore length for better adaptation against drought. Principal component analysis revealed the efficacy of ZnO NPs in inducing drought tolerance in moderate and intensive stress regimes. These results suggest that 100 ppm ZnO NPs can be used to ameliorate drought tolerance in C. sativum plants.

20.
Plants (Basel) ; 10(11)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34834686

ABSTRACT

This study evaluated the impact of conventional practices (fertilizer alone) and diverse farming approaches (such as green manuring, farmyard manure application, rice-residue incorporation, residue mulching, residue removal and residue burning) on soil attributes. A total of thirty-five farm sites were selected, with five sites (replications) for each farming approach system, which were used over the past three years in the study farms. Characterization of rice residues of all cultivars, green manure crop (sesbenia: Sesbania sesban) and decomposed farmyard manure samples showed differential behaviours for macronutrients and micronutrients. Continuous application of inorganic fertilizers significantly influenced soil attributes, especially electrical conductivity, nutrient contents, bacterial and fungal population and soil enzymatic attributes. The crop residue treatments favourably influenced the soil parameters over the control. Crop residue incorporation or burning significantly increased soil available potassium, microbial biomass, enzymatic activities and organic carbon when compared with applications of chemical fertilizer alone, while total nitrogen content was increased by residue incorporation. However, green manuring and farmyard manure applications showed inferior responses compared with residue management treatment. It is therefore recommended that bioresources should be managed properly to warrant improvements in soil properties, nutrient recycling and the sustainability for crop productivity, in order to achieve sustainable development goals for climate action.

SELECTION OF CITATIONS
SEARCH DETAIL
...