Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(6): e27550, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38510018

ABSTRACT

Heterojunction nanocomposites (ZnO:NiO:CuO) were synthesized via a hydrothermal method and annealed at three different temperatures (400 °C, 600 °C, and 800 °C). The structural, optical, and electrical properties were examined by employing XRD, SEM, UV-Vis, FTIR, and LCR meter techniques to investigate the effects of annealing. Increasing the annealing temperature resulted in the nanocomposites (NCPs) exhibiting enhanced crystallinity, purity, optical properties, and improved electrical and dielectric behavior. The calculated crystalline sizes (Debye-Scherrer method) of the NCPs were determined to be 21, 26 and 34 nm for annealing temperature 400 °C, 600 °C, and 800 °C, respectively. The calculated bandgaps of synthesized samples were found in the range of 2.92-2.55 eV. This temperature-dependent annealing process notably influenced particle size, morphology, band-gap characteristics, and photocatalytic efficiency. EDX analysis affirmed the sample purity, with elemental peaks of Zn, Cu, Ni, and O. These NCPs demonstrated exceptional photocatalytic activity against various dyes solutions (Methyl orange (MO), Methylene Blue (MB), and mixed solution of dyes) under sunlight and also showed good antibacterial properties assessed by the disc diffusion method. Notably, the nanocomposite annealed at 400 °C exhibited a particularly high degradation efficiency by degrading 96% MB and 91% MO in just 90 min under sunlight.

2.
RSC Adv ; 13(44): 30838-30854, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37869397

ABSTRACT

In this article, ZnO:NiO:CuO nanocomposites (NCPs) were synthesized using a hydrothermal method, with different Zn : Ni : Cu molar ratios (1 : 1 : 1, 2 : 1 : 1, 1 : 2 : 1, and 1 : 1 : 1). The PXRD confirmed the formation of a NCP consisting of ZnO (hexagonal), NiO (cubic), and CuO (monoclinic) structures. The crystallite sizes of NCPs were calculated using Debye Scherrer and Williamson-Hall methods. The calculated crystalline sizes (Scherrer method) of the NCPs were determined to be 21, 27, 23, and 20 nm for the molar ratios 1 : 1 : 1, 2 : 1 : 1, 1 : 2 : 1, and 1 : 1 : 2, respectively. FTIR spectra confirmed the successful formation of heterojunction NCPs via the presence of metal-oxygen bonds. The UV-vis spectroscopy was used to calculate the bandgap of synthesized samples and was found in the range of 2.99-2.17 eV. SEM images showed the mixed morphology of NCPs i.e., irregular spherical and rod-like structures. The dielectric properties, including AC conductivity, dielectric constant, impedance, and dielectric loss parameters were measured using an LCR meter. The DC electrical measurements revealed that NCPs have a high electrical conductivity. All the NCPs were evaluated for the photocatalytic degradation of Methylene blue (MB), methyl orange (MO), and a mixture of both of these dyes. The NCPs with a molar ratio 1 : 1 : 2 (Zn : Ni : Cu) displayed outstanding photocatalytic activity under sunlight, achieving the degradation efficiency of 98% for methylene blue (MB), 92% for methyl orange (MO) and more than 87% in the case of a mixture of dyes within just 90 minutes of illumination. The antibacterial activity results showed the more noxious nature of NCPs against Gram-negative bacteria with a maximum zone of inhibition revealed by the NCPs of molar ratio 1 : 2 : 1 (Zn : Ni : Cu). On the basis of these observations, it can be anticipated that the NCPs can be successfully employed for the purification of contaminated water by the degradation of hazardous organic compounds and in antibacterial ointments.

3.
Environ Sci Pollut Res Int ; 30(42): 95860-95874, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37561304

ABSTRACT

Dilute magnetic semiconductor Zn1-xCuxO (x = 0, 1.5, 3.0, and 4.5%) nanorods were prepared by hydrothermal method. The impact of dopant concentration on the physical properties was investigated along with the anti-bacterial and photocatalytic activities. Synthesis of ZnO nanorods was confirmed by the characteristic band at 380 nm in UV-Visible spectra of the synthesized samples. A red shift in absorbance spectra was observed from 380 to 465 nm with an increase in dopant concentration. The hexagonal wurtzite geometry and rod-like morphology of Cu-doped ZnO nanorods having an average size of 29 nm were confirmed by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM), respectively. An increase in the crystallinity of the material was observed with an increase in the dopant (Cu) ratio without any alteration in geometry. EDX analysis was used to confirm the purity of samples. FTIR spectra were recorded to explore the functional group present in samples. The hysteresis loop drawn by a vibrating-sample magnetometer (VSM) was utilized to analyze the ferromagnetic behavior. As-synthesized pure and Cu-ZnO nanorods were evaluated for their photocatalytic behavior for the photodegradation of methyl orange (MO) dye. Zn1 - xCuxO with x = 4.5%, pH 3, and catalyst dosage of 0.5 g has shown the maximum efficiency. Results elucidated > 81% degradation of MO dye with a rate constant (k) value of - 1.930 × 10-2 min-1 in just 90 min of exposure to a visible light source. ZnO nanorods have also exhibited anti-bacterial potential against gram-positive and gram-negative strains of bacteria. However, smaller size nanorods were found more effective to suppress the growth of gram-negative bacteria. A slight decrease (11%) in catalytic potential was observed in the 5th cycle during recycling and reuse experiments.


Subject(s)
Nanotubes , Zinc Oxide , Light , Photolysis , Bacteria
4.
RSC Adv ; 12(21): 13456-13463, 2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35527731

ABSTRACT

The hydrothermal method was used to create dilute magnetic semiconductor nanoparticles of Zn1-x Co x O (x = 0, 0.01, 0.05, 0.09). The effect of cobalt doping on the microstructure, morphological and optical properties of Zn1-x Co x O was also studied and the Co doping to host ZnO was confirmed from XRD and EDX analysis. The structural analysis showed that doping of cobalt into ZnO decreased the crystallinity, but the preferred orientation didn't change. SEM analysis revealed that the cobalt dopant did not have a strong influence on the shape of the synthesized nanoparticles. No defect-related absorption peaks were observed in the UV-Vis spectra. The crystallinity of the doped samples was improved by high growth temperature and long growth time. Ferromagnetic behavior above room temperature was detected in co-doped ZnO nanoparticles. The ferromagnetic behavior increased with increasing Co (up to x = 0.05) doping. The ferromagnetic behavior declined when the Co content was further increased. Related research shows that doped ZnO nanoparticles have better dielectric, electrical conductivity, and magnetic properties than pure ZnO. This high ferromagnetism is usually a response reported for dilute magnetic semiconductors. These semiconductor nanoparticles were further used to designed spintronic based applications.

5.
Materials (Basel) ; 14(19)2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34640225

ABSTRACT

We have investigated the electrical and optical properties of Cd0.9Zn0.1Te:(In,Pb) wafers obtained from the tip, middle, and tail of the same ingot grown by modified vertical Bridgman method using I-V measurement, Hall measurement, IR Transmittance, IR Microscopy and Photoluminescence (PL) spectroscopy. I-V results show that the resistivity of the tip, middle, and tail wafers are 1.8 × 1010, 1.21 × 109, and 1.2 × 1010 Ω·cm, respectively, reflecting native deep level defects dominating in tip and tail wafers for high resistivity compared to the middle part. Hall measurement shows the conductivity type changes from n at the tip to p at the tail in the growth direction. IR Transmittance for tail, middle, and tip is about 58.3%, 55.5%, and 54.1%, respectively. IR microscopy shows the density of Te/inclusions at tip, middle, and tail are 1 × 103, 6 × 102 and 15 × 103/cm2 respectively. Photoluminescence (PL) spectra reflect that neutral acceptor exciton (A0,X) and neutral donor exciton (D0,X) of tip and tail wafers have high intensity corresponding to their high resistivity compared to the middle wafer, which has resistivity a little lower. These types of materials have a large number of applications in radiation detection.

SELECTION OF CITATIONS
SEARCH DETAIL
...