Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Trends Parasitol ; 40(5): 372-377, 2024 May.
Article in English | MEDLINE | ID: mdl-38494388

ABSTRACT

Significant variations in the abundance of mitochondrial RNA processing proteins and their target RNAs across trypanosome life stages present an opportunity to explore the regulatory mechanisms that drive these changes. Utilizing omics approaches can uncover unconventional targets, aiding our understanding of the parasites' adaptation and enabling targeted interventions for differentiation.


Subject(s)
RNA Editing , Trypanosoma , Trypanosoma/genetics , Life Cycle Stages/genetics , RNA, Protozoan/genetics , RNA, Protozoan/metabolism , Protozoan Proteins/metabolism , Protozoan Proteins/genetics
2.
Trials ; 24(1): 720, 2023 Nov 11.
Article in English | MEDLINE | ID: mdl-37951972

ABSTRACT

BACKGROUND: In the severe forms of COVID-19 and many other infectious diseases, the patients develop a cytokine storm syndrome (CSS) where pro-inflammatory cytokines such as IL-6 and TNF-α play a key role in the development of this serious process. Selenium and iron are two important trace minerals, and their metabolism is tightly connected to immune system function. Numerous studies highlight the role of selenium and iron metabolism changes in the procedure of COVID-19 inflammation. The immunomodulator effect of nanomedicines that are synthesized based on nanochelating technology has been proved in previous studies. In the present study, the effects of the combination of BCc1(with iron-chelating property) and Hep-S (containing selenium) nanomedicines on mentioned cytokines levels in hospitalized moderate COVID-19 patients were evaluated. METHODS: Laboratory-confirmed moderate COVID-19 patients were enrolled to participate in a randomized, double-blind, placebo-controlled study in two separate groups: combination of BCc1 and Hep-S (N = 62) (treatment) or placebo (N = 60) (placebo). The blood samples were taken before medications on day zero, at discharge, and 28 days after consumption to measure hematological and biochemical parameters and cytokine levels. The clinical symptoms of all the patients were recorded according to an assessment questionnaire before the start of the treatment and on days 3 and discharge day. RESULTS: The results revealed that consumption of the nanomedicines led to a significant decrease in the mean level of IL-6 cytokine, and at the end of the study, there was a 77% downward trend in IL-6 in the nanomedicine group, while an 18% increase in the placebo group (p < 0.05). In addition, the patients in the nanomedicines group had lower TNF-α levels; accordingly, there was a 21% decrease in TNF-α level in the treatment group, while a 31% increase in this cytokine level in the placebo was observed (p > 0.05). On the other hand, in nanomedicines treated groups, clinical scores of coughing, fatigue, and need for oxygen therapy improved. CONCLUSIONS: In conclusion, the combination of BCc1 and Hep-S inhibits IL-6 as a highly important and well-known cytokine in COVID-19 pathophysiology and presents a promising view for immunomodulation that can manage CSS. TRIAL REGISTRATION: Iranian Registry of Clinical Trials RCT20170731035423N2 . Registered on June 12, 2020.


Subject(s)
COVID-19 , Selenium , Humans , Adult , Interleukin-6 , SARS-CoV-2 , Tumor Necrosis Factor-alpha , Iran , Treatment Outcome , Cytokines , Iron , Double-Blind Method
3.
Spinal Cord ; 60(1): 63-70, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34504283

ABSTRACT

STUDY DESIGN: This is a phase I clinical trial. OBJECTIVES: Our objective was to assess the safety and feasibility of autologous mucosal olfactory ensheathing cell (OEC) and bone marrow mesenchymal stem cell (MSC) co-transplantation in people with chronic, complete (American Spinal Injury Association (ASIA) Impairment Scale (AIS) classification A) spinal cord injury (SCI). SETTING: This study was performed at Shohada Tajrish Hospital, Tehran, Iran. METHODS: Three individuals with the traumatic SCI of the thoracic level were enrolled. They received the autologous OEC and MSC combination through the lumbar puncture. All adverse events and possible functional outcomes were documented performing pre- and post-operative general clinical examination, magnetic resonance imaging (MRI), neurological assessment based on the International Standard of Neurological Classification for SCI, and functional evaluation using Spinal Cord Independence Measure version III (SCIM III). RESULTS: No serious safety issue was recorded during the 2 years of follow-up. MRI findings remained unchanged with no neoplastic tissue formation. AIS improved from A to B in one of the participants. SCIM III evaluation also showed some degrees of progress in this participant's functional ability. The two other research participants had negligible or no improvement in their sensory scores without any changes in the AIS and SCIM III scores. No motor recovery was observed in any of the participants. CONCLUSIONS: Overall, this 2-year trial was not associated with any adverse findings, which may suggest the safety of autologous OEC and bone marrow MSC combination for the treatment of human SCI.


Subject(s)
Mesenchymal Stem Cells , Spinal Cord Injuries , Transplantation, Autologous , Feasibility Studies , Humans , Iran , Spinal Cord Injuries/diagnostic imaging , Spinal Cord Injuries/surgery , Transplantation, Autologous/adverse effects , Transplantation, Autologous/methods
4.
Biologicals ; 68: 60-64, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32859464

ABSTRACT

Adjuvants are a crucial component of recombinant vaccines such as the human papillomavirus (HPV) vaccine. Monophosphoryl lipid A (MPL) extracted from Salmonella Minnesota lipopolysaccharide is used as an adjuvant for the HPV vaccine. Due to the limitations in accessibility and reproducibility of MPL, investigating synthetic analogues of MPL (synMPL) is urgently needed to overcome these limitations. In this study, female BALB/c mice were vaccinated by HPV vaccine formulated with synMPL and aluminum hydroxide gel in which the concentration of synMPL ranged from 0 to 100 µg/dose. Anti-HPV L1 VLP antibody was measured for each group through Indirect ELISA and compared with Cervarix and Gardasil vaccines as approved anti-HPV vaccines. SynMPL showed a concentration-dependent increase up to 50 µg/dose in the immunogenicity of the vaccine. Therefore, synMPL at concentration of 50 µg/dose was selected as optimum concentration. The GMT profiling of synMPL-formulated vaccine (named Papilloguard) and Cervarix was not statistically different (Mann-Whitney test). The Gardasil vaccine showed 10-fold lower GMT for anti-HPV 18 L1 VLP antibody but anti-HPV 16 L1 VLP antibody was similar to Cervarix and Papilloguard. The current findings suggest that the synMPL in combination with aluminum hydroxide could be used as a potential adjuvant candidate for human vaccine.


Subject(s)
Human papillomavirus 16/immunology , Human papillomavirus 18/immunology , Lipid A/analogs & derivatives , Papillomavirus Infections/immunology , Papillomavirus Vaccines/immunology , Vaccines, Synthetic/immunology , Adjuvants, Immunologic/chemical synthesis , Adjuvants, Immunologic/chemistry , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , Enzyme-Linked Immunosorbent Assay , Female , Human papillomavirus 16/physiology , Human papillomavirus 18/physiology , Humans , Lipid A/chemical synthesis , Lipid A/chemistry , Lipid A/immunology , Mice, Inbred BALB C , Papillomavirus Infections/prevention & control , Papillomavirus Infections/virology , Papillomavirus Vaccines/administration & dosage , Papillomavirus Vaccines/chemistry , Vaccination/methods , Vaccine Potency , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/chemistry
5.
APMIS ; 127(3): 150-157, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30746792

ABSTRACT

Monophosphoryl lipid A (MPL), a purified and detoxified product of lipopolysaccharide (LPS) of Salmonella minnesota R595, has been used as an adjuvant in different vaccines. In this study, the efficacy of human papillomaviruses (HPV) and hepatitis B virus (HBV) vaccines formulated with aluminum hydroxide combined with two different synthetic MPLs, 3D-(6-acyl)-PHAD or 3D-PHAD, or aluminum hydroxide combined with the mixtures of such MPLs, has been assessed. The immunogenicity in female BALB/c mice was verified by two intramuscular injections of differently formulated HPV and HBV vaccines and the total immunoglobulin G (IgG) antibody response was considered to compare the employed adjuvants. As verified experimentally, a mixture of 3D-(6-acyl)-PHAD and 3D-PHAD was able to induce significantly higher antibody titer than that of either 3D-(6-acyl)-PHAD or 3D-PHAD, when used individually. Interestingly, based on the responses achieved in terms of the total antibody levels, such mixture of synthetic MPLs was found to be even more effective than the bacterially derived MPL. Accordingly, the obtained results indicated that, if designed appropriately, synthetic MPL molecules could provide improved adjuvanticity with high level of consistency.


Subject(s)
Adjuvants, Immunologic/pharmacology , Aluminum Hydroxide/pharmacology , Hepatitis B Vaccines/immunology , Immunogenetic Phenomena/drug effects , Lipid A/analogs & derivatives , Papillomavirus Vaccines/immunology , Adjuvants, Immunologic/administration & dosage , Aluminum Hydroxide/immunology , Animals , Antibodies, Viral/blood , Female , Immunoglobulin G/blood , Lipid A/chemical synthesis , Lipid A/pharmacology , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL
...