Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Virol J ; 21(1): 67, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38509569

ABSTRACT

Since 1997, highly pathogenic avian influenza viruses, such as H5N1, have been recognized as a possible pandemic hazard to men and the poultry business. The rapid rate of mutation of H5N1 viruses makes the whole process of designing vaccines extremely challenging. Here, we used an in silico approach to design a multi-epitope vaccine against H5N1 influenza A virus using hemagglutinin (HA) and neuraminidase (NA) antigens. B-cell epitopes, Cytotoxic T lymphocyte (CTL) and Helper T lymphocyte (HTL) were predicted via IEDB, NetMHC-4 and NetMHCII-2.3 respectively. Two adjuvants consisting of Human ß-defensin-3 (HßD-3) along with pan HLA DR-binding epitope (PADRE) have been chosen to induce more immune response. Linkers including KK, AAY, HEYGAEALERAG, GPGPGPG and double EAAAK were utilized to link epitopes and adjuvants. This construct encodes a protein having 350 amino acids and 38.46 kDa molecular weight. Antigenicity of ~ 1, the allergenicity of non-allergen, toxicity of negative and solubility of appropriate were confirmed through Vaxigen, AllerTOP, ToxDL and DeepSoluE, respectively. The 3D structure of H5N1 was refined and validated with a Z-Score of - 0.87 and an overall Ramachandran of 99.7%. Docking analysis showed H5N1 could interact with TLR7 (docking score of - 374.08 and by 4 hydrogen bonds) and TLR8 (docking score of - 414.39 and by 3 hydrogen bonds). Molecular dynamics simulations results showed RMSD and RMSF of 0.25 nm and 0.2 for H5N1-TLR7 as well as RMSD and RMSF of 0.45 nm and 0.4 for H5N1-TLR8 complexes, respectively. Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) confirmed stability and continuity of interaction between H5N1-TLR7 with the total binding energy of - 29.97 kJ/mol and H5N1-TLR8 with the total binding energy of - 23.9 kJ/mol. Investigating immune response simulation predicted evidence of the ability to stimulate T and B cells of the immunity system that shows the merits of this H5N1 vaccine proposed candidate for clinical trials.


Subject(s)
Influenza A Virus, H5N1 Subtype , Vaccines , Animals , Humans , Influenza A Virus, H5N1 Subtype/genetics , Epitopes, T-Lymphocyte/genetics , Toll-Like Receptor 7 , Toll-Like Receptor 8 , Epitopes, B-Lymphocyte , Computational Biology/methods , Molecular Docking Simulation , Vaccines, Subunit/genetics
2.
J Biomol Struct Dyn ; : 1-18, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38319027

ABSTRACT

Microbial resistance against common antibiotics has become one of the most serious threats to human health. The increasing statistics on this problem show the necessity of finding a way to deal with it. In recent years, antimicrobial peptides with unique properties and the capability of targeting a wide range of pathogens, have been considered as a potential for replacing common antibiotics. A small chitin-binding protein with anticandidal activity was isolated from Moringa oleifera seeds by Neto and colleagues in 2017, which very much resembled antimicrobial peptides. In this study, the antimicrobial protein 'AF-DP' was identified and characterized. AF-DP was heterologously expressed, purified, and characterized, and its 3D structure was predicted. Six molecular dynamic simulations were performed to investigate how the protein interacts with Gram-negative inner and outer, Gram-positive, fungal, cancerous, and normal mammalian membranes. Also, its antimicrobial and anticancer activity was assessed in vitro via minimum inhibition concentration (MIC) and MTT assays, respectively. This protein with 111 amino acids and a total net charge (of 10.5) has been predicted to be mainly composed of alpha helix and random coils. Its MIC affecting the growth of Escherichia coli, Staphylococcus aureus, and Candida albicans was 30 µg/ml, 100 µg/ml, and 100 µg/ml, respectively; AF-DP showed anticancer activity against MCF-7 breast cancer cell line. Scanning electron microscopic analysis confirmed the creation of pores and scratches on the surface of the bacterial membrane. The results of this research show that AF-DP can be a candidate for the production of new drugs as an AMP with antimicrobial activity.Communicated by Ramaswamy H. Sarma.

3.
Microbiol Spectr ; 12(2): e0346523, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38206002

ABSTRACT

The emulsifying ability of SA01-OmpA (outer membrane protein A from Acinetobacter sp. SA01) was found to be constrained by challenges like low production efficiency and high costs associated with protein recovery from E. coli inclusion bodies, as described in our previous study. The present study sought to benefit from the advantages of the targeted truncating of SA01-OmpA protein, taking into account the reduced propensity of protein expression as inclusion bodies and cytotoxicity. Here, the structure and activity relationship of two truncated recombinant forms of SA01-OmpA protein was unraveled through a hybrid approach based on experimental data and computational methodologies, representing an innovative bioemulsifier with advantageous emulsifying activity. The recombinant truncated SA01-OmpA variants were cloned and heterologously expressed in E. coli host cells and subsequently purified. The results showed increased emulsifying activity of N-terminally truncated SA01-OmpA (NT-OmpA) compared to full-length SA01-OmpA. Molecular dynamics (MD) simulations analysis demonstrated a direct correlation between the C-terminally truncated SA01-OmpA (CT-OmpA) and its expression as inclusion bodies. Analysis of the structure-activity relationship of truncated variants of SA01-OmpA revealed that, compared to the full-length protein, deletion of the ß-barrel portion from the N-terminal of SA01-OmpA increased the emulsifying activity of NT-OmpA while lowering its expression as inclusion bodies. Contrary to the full-length protein, the N-terminally truncated SA01-OmpA was not as cytotoxic, according to the MTT assay, FCM analysis, and AO/EB staining. The findings of this extensive study advance our knowledge of SA01-OmpA at the molecular level as well as the design and development of efficient bioemulsifiers.IMPORTANCEPrevious research (Shahryari et al. 2021, mSystems 6: e01175-20) introduced and characterized the SA01-OmpA protein as a multifaceted protein with a variety of functions, including maintaining cellular homeostasis under oxidative stress conditions, biofilm formation, outer membrane vesicles (OMV) biogenesis, and beneficial emulsifying capacity. By truncating the SA01-OmpA protein, the current study presents a unique method for developing protein-type bioemulsifiers. The findings indicate that the N-terminally truncated SA01-OmpA (NT-OmpA) has the potential to fully replace full-length SA01-OmpA as a novel bioemulsifier with significant emulsifying activity. This study opens up a new frontier in bioemulsifiers, shedding light on a possible relationship between the structure and activity of SA01-OmpA truncated forms.


Subject(s)
Bacterial Outer Membrane Proteins , Escherichia coli , Escherichia coli/metabolism , Bacterial Outer Membrane Proteins/metabolism
4.
Front Microbiol ; 14: 1132760, 2023.
Article in English | MEDLINE | ID: mdl-37234543

ABSTRACT

The keratin-degrading bacterium Bacillus licheniformis secretes a keratinase with potential industrial interest. Here, the Keratinase gene was intracellularly expressed in Escherichia coli BL21(DE3) using pET-21b (+) vector. Phylogenetic tree analysis showed that KRLr1 is closely related to Bacillus licheniformis keratinase that belongs to the serine peptidase/subtilisin-like S8 family. Recombinant keratinase appeared on the SDS-PAGE gel with a band of about 38 kDa and was confirmed by western blotting. Expressed KRLr1 was purified by Ni-NTA affinity chromatography with a yield of 85.96% and then refolded. It was found that this enzyme has optimum activity at pH 6 and 37°C. PMSF inhibited the KRLr1 activity and Ca2+ and Mg2+ increased the KRLr1 activity. Using keratin 1% as the substrate, the thermodynamic values were determined as Km 14.54 mM, kcat 912.7 × 10-3 (S-1), and kcat/Km 62.77 (M-1 S-1). Feather digestion by recombinant enzyme using HPLC method, showed that the amino acids cysteine, phenylalanine, tyrosine and lysine had the highest amount compared to other amino acids obtained from digestion. Molecular dynamics (MD) simulation of HADDOCK docking results exhibited that KRLr1 enzyme was able to interact strongly with chicken feather keratine 4 (FK4) compared to chicken feather keratine 12 (FK12). These properties make keratinase KRLr1 a potential candidate for various biotechnological applications.

5.
Microb Pathog ; 180: 106130, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37121524

ABSTRACT

Currently, there are two vaccines based on killed and/or weakened Salmonella bacteria, but no recombinant vaccine is available for preventing or treating the disease. We used an in silico approach to design a multi-epitope vaccine against Salmonella using OmpA, OmpS, SopB, SseB, SthA and FilC antigens. We predicted helper T lymphocyte, cytotoxic T lymphocyte, and IFN-γ epitopes. The FilC sequence was used as a bovine TLR5 agonist, and the linkers KK, AAY, GPGPG and EAAAK were used to connect epitopes. The final sequence consisted of 747 amino acid residues, and the expressed soluble protein (∼79.6 kDa) was predicted to be both non-allergenic and antigenic. The tertiary structure of modeled protein was refined and validated, and the interactions of vaccine 3D structure were evaluated using molecular docking, and molecular dynamics simulation (RMSD, RMSF and Gyration). This structurally stable protein could interact with human TLR5. The C-ImmSim server predicted that this proposed vaccine likely induces an immune response by stimulating T and B cells, making it a potential candidate for further evaluation for the prevention and treatment of Salmonella infection.


Subject(s)
Toll-Like Receptor 5 , Virulence Factors , Animals , Cattle , Humans , Molecular Docking Simulation , Epitopes, T-Lymphocyte , Epitopes, B-Lymphocyte , Vaccines, Subunit , Salmonella/genetics , Computational Biology
6.
J Biomol Struct Dyn ; 41(24): 15354-15385, 2023.
Article in English | MEDLINE | ID: mdl-36927377

ABSTRACT

The two types of bladder cancer, muscle invasive and non-muscle invasive (NMIBC), are among the most prevalent cancers worldwide. Despite this, even though muscle-invasive bladder cancer is more deadly, NMIBC requires more therapy due to a greater recurrence rate and more extended and expensive care. Immunotherapy, intravesical chemotherapy, cystoscopy, and transurethral resection (TUR) are among the treatments available. Crude scorpion venomand purified proteins and peptides, can suppress cancer metastasis in an in vitro or in vivo context, suppress cancer growth, halt the cell cycle, and cause cell apoptosis, according to an increasing number of experimental and preclinical studies. In this research, three novels discovered peptides (P2, P3 and P4. ProteomeXchange: PXD036231) from Buthotus saulcyi and, Odontobuthus doriae scorpions were used along with a peptide called pantinin (as a control). The phylogenetic tree showed that the peptides belong to Chaperonin HSP60, Chrysophsin2 and Pheromone-binding protein2, respectively. These peptides were docked with four known antigens, BAGE, BLCAP, PRAME and ROR1 related to bladder cancer and three bacterial antigens FliC, FliD and FimH to investigate their antimicrobial and anticancer properties. The results showed that peptides 2 and 3 have the best binding rate. The MD simulation results also confirmed the binding of peptides 2 and 3 to antigens. The penetration power of peptides 2 and 3 in the membrane of cancer cells and bacterial cells was also simulated, and the results of RMSD and PD confirmed it. QSAR suggests that peptides 2 and 3 can act as anti-cancer and anti-microbial peptides.Communicated by Ramaswamy H. Sarma.


Subject(s)
Non-Muscle Invasive Bladder Neoplasms , Urinary Bladder Neoplasms , Animals , Humans , Scorpions , Molecular Docking Simulation , Antimicrobial Peptides , Molecular Dynamics Simulation , Phylogeny , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/surgery , Antigens, Neoplasm
7.
Biol Res ; 56(1): 3, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36658640

ABSTRACT

BACKGROUND: Contrary to the advantageous anticancer activities of curcumin (Cur), limited bioavailability and solubility hindered its efficacy. Here, nontoxic dendrosomal nano carrier with Cur was used to overcome these problems. Despite considerable antitumor properties of Oxaliplatin (Oxa), the limiting factors are drug resistance and adverse side-effects. The hypothesis of this study was to evaluate the possible synergism between dendrosomal nanocurcumin (DNC) and Oxa and these agents showed growth regulatory effects on SKOV3 and OVCAR3 cells. METHODS AND MATERIALS: In the present study, colony formation, wound healing motility, cell adhesion, transwell invasion and migration assay and cell cycle arrest with or without DNC, Oxa and Combination were defined. In addition to, real time PCR and Western blot were used to analyze AKT, PI3K, PKC, JNK, P38 and MMPs mRNAs and proteins expressions. Docking of MMP-2-Cur, MMP-2-DNC and MMP-2-Oxa was performed and the results of all three complexes were simulated by molecular dynamics. RESULTS: Our findings illustrated that DNC had the greatest effect on cell death as compared to the Cur alone. Moreover, the growth inhibitory effects (such as cell death correlated to apoptosis) were more intense if Oxa was added followed by DNC at 4 h interval. However, insignificant effects were observed upon simultaneous addition of these two agents in both cell lines. Besides, a combination of agents synergistically alters the relative expression of MMP-9. CONCLUSIONS: The docking results showed that His70 and Asp100 may play a key role at the MMP-2 binding site. The matrigel invasion as well as cell viability of ovarian cancer cell lines SKOV3 and OVCAR3 by DNC alone or in combination with Oxa was inhibited significantly. The inhibitory effects of these agents were due to the differential expression levels of MMP 2 and MMP 9 regulated by multiple downstream signaling cascades. From the molecular dynamic simulation studies, it was confirmed that DNC established a strong interaction with MMP-2.


Subject(s)
Curcumin , Ovarian Neoplasms , Humans , Female , Oxaliplatin/pharmacology , Apoptosis , Matrix Metalloproteinase 2/pharmacology , Ovarian Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation , Curcumin/pharmacology , Cell Movement
8.
Biol. Res ; 56: 3-3, 2023. ilus, tab, graf
Article in English | LILACS | ID: biblio-1420301

ABSTRACT

BACKGROUND: Contrary to the advantageous anticancer activities of curcumin (Cur), limited bioavailability and solubility hindered its efficacy. Here, nontoxic dendrosomal nano carrier with Cur was used to overcome these problems. Despite considerable antitumor properties of Oxaliplatin (Oxa), the limiting factors are drug resistance and adverse side-effects. The hypothesis of this study was to evaluate the possible synergism between dendrosomal nanocurcumin (DNC) and Oxa and these agents showed growth regulatory effects on SKOV3 and OVCAR3 cells. METHODS: and materials In the present study, colony formation, wound healing motility, cell adhesion, transwell invasion and migration assay and cell cycle arrest with or without DNC, Oxa and Combination were defined. In addition to, real time PCR and Western blot were used to analyze AKT, PI3K, PKC, JNK, P38 and MMPs mRNAs and proteins expressions. Docking of MMP-2-Cur, MMP-2-DNC and MMP-2-Oxa was performed and the results of all three complexes were simulated by molecular dynamics. RESULTS: Our findings illustrated that DNC had the greatest effect on cell death as compared to the Cur alone. Moreover, the growth inhibitory effects (such as cell death correlated to apoptosis) were more intense if Oxa was added followed by DNC at 4 h interval. However, insignificant effects were observed upon simultaneous addition of these two agents in both cell lines. Besides, a combination of agents synergistically alters the relative expression of MMP-9. CONCLUSIONS: The docking results showed that His70 and Asp100 may play a key role at the MMP-2 binding site. The matrigel invasion as well as cell viability of ovarian cancer cell lines SKOV3 and OVCAR3 by DNC alone or in combination with Oxa was inhibited significantly. The inhibitory effects of these agents were due to the differential expression levels of MMP 2 and MMP 9 regulated by multiple downstream signaling cascades. From the molecular dynamic simulation studies, it was confirmed that DNC established a strong interaction with MMP-2.


Subject(s)
Humans , Female , Ovarian Neoplasms/drug therapy , Curcumin/pharmacology , Cell Movement , Apoptosis , Matrix Metalloproteinase 2/pharmacology , Cell Line, Tumor , Cell Proliferation , Oxaliplatin/pharmacology
9.
Front Pharmacol ; 13: 977568, 2022.
Article in English | MEDLINE | ID: mdl-36386211

ABSTRACT

Inosine monophosphate dehydrogenase (IMPDH) is a key enzyme in de novo biosynthesis of purine nucleotides. Due to this important role, it is a great target to drug discovery for a wide range of activities, especially immunosuppressant in heart and kidney transplantation. Both human IMPDH isoforms are expressed in stimulated lymphocytes. In addition to the side effects of existing drugs, previous studies have mainly focused on the type II isoform. In this study, virtual screening and computer-aided approaches were employed to identify potential drugs with simultaneous inhibitory effects on both human IMPDH isoforms. After Re-docking, Double-step docking, and identification of virtual hits based on the PLANTS scoring function, drug-likeness and ADME-Tox assessments of the topmost ligands were performed. Following further evaluation, the best ligand was selected and, in complex with both isoforms, simulated in monomeric and tetrameric forms using molecular dynamics to evaluate its stability and binding pattern. The results showed a potential drug candidate [(S)-N-(3-hydroxy-1-(4-hydroxyphenyl) propyl)-2-(3-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl) acetamide] with a high inhibitory effect on the two human IMPDH isoforms. This drug-like inhibitor could potentially serve as an immunosuppressant to prevent transplant rejection response by inhibiting B- and T-lymphocyte proliferation. In addition, its effect can be evaluated in various therapeutic targets in which IMPDH is known as a therapeutic target, especially in Covid-19 patients.

10.
Biomed Pharmacother ; 155: 113557, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36115112

ABSTRACT

Vaccines against Brucella abortus, B. melitensis and B. suis have been based on weakened or killed bacteria, however there is no recombinant vaccine for disease prevention or therapy. This study attempted to predict IFN-γ epitopes, T cell cytotoxicity, and T lymphocytes in order to produce a multiepitope vaccine based on BtpA, Omp16, Omp28, virB10, Omp25, and Omp31 antigens against B. melitensis, B. abortus, and B. suis. AAY, GPGPG, and EAAAK peptides were used as epitope linkers, while the PADRE sequence was used as a Toll-like receptor 2 (TLR2) and TLR4 agonist. The final construct included 389 amino acids, and was a soluble protein with a molecular weight of 41.3 kDa, and nonallergenic and antigenic properties. Based on molecular docking studies, molecular dynamics simulations such as Gyration, RMSF, and RMSD, as well as tertiary structure validation methods, the modeled protein had a stable structure capable of interacting with TLR2/4. As a result, this novel vaccine may stimulate immune responses in B and T cells, and could prevent infection by B. suis, B. abortus, and B. melitensis.


Subject(s)
Brucella melitensis , Brucellosis , Humans , Toll-Like Receptor 2 , Epitope Mapping , Epitopes, T-Lymphocyte , Brucellosis/prevention & control , Brucellosis/microbiology , Toll-Like Receptor 4 , Molecular Docking Simulation , Antigens, Bacterial/chemistry , Amino Acids
11.
Sci Rep ; 12(1): 10301, 2022 06 18.
Article in English | MEDLINE | ID: mdl-35717508

ABSTRACT

Cellulases are hydrolytic enzymes with wide scientific and industrial applications. We described a novel cellulase, CelC307, from the thermophilic indigenous Cohnella sp. A01. The 3-D structure of the CelC307 was predicted by comparative modeling. Docking of CelC307 with specific inhibitors and molecular dynamic (MD) simulation revealed that these ligands bound in a non-competitive manner. The CelC307 protein was purified and characterized after recombinant expression in Escherichia coli (E. coli) BL21. Using CMC 1% as the substrate, the thermodynamic values were determined as Km 0.46 mM, kcat 104.30 × 10-3 (S-1), and kcat/Km 226.73 (M-1 S-1). The CelC307 was optimally active at 40 °C and pH 7.0. The culture condition was optimized for improved CelC307 expression using Plackett-Burman and Box-Behnken design as follows: temperature 20 °C, pH 7.5, and inoculation concentration with an OD600 = 1. The endoglucanase activity was positively modulated in the presence of Na+, Li+, Ca2+, 2-mercaptoethanol (2-ME), and glycerol. The thermodynamic parameters calculated for CelC307 confirmed its inherent thermostability. The characterized CelC307 may be a suitable candidate for various biotechnological applications.


Subject(s)
Bacillales , Cellulase , Cellulases , Bacillales/metabolism , Cellulase/metabolism , Cellulases/metabolism , Enzyme Stability , Escherichia coli/genetics , Escherichia coli/metabolism , Hydrogen-Ion Concentration , Ions , Temperature
12.
Sci Rep ; 11(1): 24485, 2021 12 29.
Article in English | MEDLINE | ID: mdl-34966175

ABSTRACT

A new strain of Influenza A Virus (IAV), so-called "H7N9 Avian Influenza", is the first strain of this virus in which a human is infected by transmitting the N9 of influenza virus. Although continuous human-to-human transmission has not been reported, the occurrence of various H7N9-associated epidemics and the lack of production of strong antibodies against H7N9 in humans warn of the potential for H7N9 to become a new pandemic. Therefore, the need for effective vaccination against H7N9 as a life-threatening viral pathogen has become a major concern. The current study reports the design of a multi-epitope vaccine against Hemagglutinin (HA) and Neuraminidase (NA) proteins of H7N9 Influenza A virus by prediction of Cytotoxic T lymphocyte (CTL), Helper T lymphocyte (HTL), IFN-γ and B-cell epitopes. Human ß-defensin-3 (HßD-3) and pan HLA DR-binding epitope (PADRE) sequence were considered as adjuvant. EAAAK, AAY, GPGPG, HEYGAEALERAG, KK and RVRR linkers were used as a connector for epitopes. The final construct contained 777 amino acids that are expected to be a recombinant protein of about ~ 86.38 kDa with antigenic and non-allergenic properties after expression. Modeled protein analysis based on the tertiary structure validation, docking studies, and molecular dynamics simulations results like Root-mean-square deviation (RMSD), Gyration, Root-mean-square fluctuation (RMSF) and Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) showed that this protein has a stable construct and capable of being in interaction with Toll-like receptor 7 (TLR7), TLR8 and m826 antibody. Analysis of the obtained data the demonstrates that suggested vaccine has the potential to induce the immune response by stimulating T and Bcells, and may be utilizable for prevention purposes against Avian Influenza A (H7N9).


Subject(s)
Epitopes/immunology , Influenza A Virus, H7N9 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Animals , Birds , Computational Biology , Computer Simulation , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Immunity , Influenza in Birds/immunology , Models, Immunological , Models, Molecular , Neuraminidase/immunology , Viral Proteins/immunology
13.
PLoS One ; 15(6): e0234958, 2020.
Article in English | MEDLINE | ID: mdl-32574185

ABSTRACT

Proteases play an essential role in living organisms and represent one of the largest groups of industrial enzymes. The aim of this work was recombinant production and characterization of a newly identified thermostable protease 1147 from thermophilum indigenous Cohnella sp. A01. Phylogenetic tree analysis showed that protease 1147 is closely related to the cysteine proteases from DJ-1/ThiJ/PfpI superfamily, with the conserved catalytic tetrad. Structural prediction using MODELLER 9v7 indicated that protease 1147 has an overall α/ß sandwich tertiary structure. The gene of protease 1147 was cloned and expressed in Escherichia coli (E. coli) BL21. The recombinant protease 1147 appeared as a homogenous band of 18 kDa in SDS-PAGE, which was verified by western blot and zymography. The recombinant protein was purified with a yield of approximately 88% in a single step using Ni-NTA affinity chromatography. Furthermore, a rapid one-step thermal shock procedure was successfully implemented to purify the protein with a yield of 73%. Using casein as the substrate, Km, and kcat, kcat/Km values of 13.72 mM, 3.143 × 10-3 (s-1), and 0.381 (M-1 S-1) were obtained, respectively. The maximum protease activity was detected at pH = 7 and 60°C with the inactivation rate constant (kin) of 2.10 × 10-3 (m-1), and half-life (t1/2) of 330.07 min. Protease 1147 exhibited excellent stability to organic solvent, metal ions, and 1% SDS. The protease activity was significantly enhanced by Tween 20 and Tween 80 and suppressed by cysteine protease specific inhibitors. Docking results and molecular dynamics (MD) simulation revealed that Tween 20 interacted with protease 1147 via hydrogen bonds and made the structure more stable. CD and fluorescence spectra indicated structural changes taking place at 100°C, very basic and acidic pH, and in the presence of Tween 20. These properties make this newly characterized protease a potential candidate for various biotechnological applications.


Subject(s)
Bacillales/enzymology , Bacterial Proteins/chemistry , Peptide Hydrolases/chemistry , Bacterial Proteins/isolation & purification , Bacterial Proteins/ultrastructure , Cloning, Molecular , Enzyme Assays , Enzyme Stability , Hydrogen-Ion Concentration , Molecular Dynamics Simulation , Molecular Weight , Peptide Hydrolases/isolation & purification , Peptide Hydrolases/ultrastructure , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/ultrastructure , Substrate Specificity
14.
Ophthalmol Ther ; 8(2): 155-175, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30788805

ABSTRACT

Macular telangiectasia type 2 (MacTel) is a relatively rare disease without established treatments. Although MacTel was previously considered a primarily vascular condition, the thinking on its pathogenesis has shifted to it now being considered principally a neurodegenerative disease. This has resulted in a subsequent change in the approach to treatment toward neuro-protection for the non-proliferative phase of this disease. Carotenoid supplementation has had mixed results. Ciliary neurotrophic factor (CNTF) has demonstrated some promising early results, but further study is necessary to determine its actual effect. Some structural improvements have been seen in the non-proliferative phase with oral acetazolamide but without accompanying functional improvement. Anti-vascular endothelial drugs have been studied and not found to have benefit in the non-proliferative phase of disease but have demonstrated significant structural and functional value in the treatment of secondary neovascularization. There is no level I evidence for the various proposed MacTel treatments, and efforts need to be directed toward conducting multicenter randomized trials to better understand possible treatments for this condition.

15.
Int J Phytoremediation ; 18(3): 278-87, 2016.
Article in English | MEDLINE | ID: mdl-26366627

ABSTRACT

As the depth of soil petroleum contamination can vary substantially under field conditions, a rhizotron experiment was performed to investigate the influence of endophyte, P. indica, on maize growth and degradation of petroleum components in a shallow and a deep-reaching subsurface layer of a soil. For control, a treatment without soil contamination was also included. The degree in contamination and the depth to which it extended had a strong effect on the growth of the plant roots. Contaminated soil layers severely inhibited root growth thus many roots preferred to bypass the shallow contaminated layer and grow in the uncontaminated soil. While the length and branching pattern of these roots were similar to those of uncontaminated treatment. Inoculation of maize with P. indica could improve root distribution and root and shoot growth in all three contamination treatments. This inoculation also enhanced petroleum degradation in soil, especially in the treatment with deep-reaching contamination, consequently the accumulation of petroleum hydrocarbons (PAHs) in the plant tissues were increased.


Subject(s)
Basidiomycota/metabolism , Petroleum/metabolism , Plant Roots/growth & development , Soil Pollutants/metabolism , Zea mays/microbiology , Biodegradation, Environmental , Endophytes/metabolism , Petroleum/analysis , Plant Roots/metabolism , Plant Roots/microbiology , Soil Pollutants/analysis , Zea mays/growth & development , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...