Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 358: 120756, 2024 May.
Article in English | MEDLINE | ID: mdl-38599080

ABSTRACT

Water quality indicators (WQIs), such as chlorophyll-a (Chl-a) and dissolved oxygen (DO), are crucial for understanding and assessing the health of aquatic ecosystems. Precise prediction of these indicators is fundamental for the efficient administration of rivers, lakes, and reservoirs. This research utilized two unique DL algorithms-namely, convolutional neural network (CNNs) and gated recurrent units (GRUs)-alongside their amalgamation, CNN-GRU, to precisely gauge the concentration of these indicators within a reservoir. Moreover, to optimize the outcomes of the developed hybrid model, we considered the impact of a decomposition technique, specifically the wavelet transform (WT). In addition to these efforts, we created two distinct machine learning (ML) algorithms-namely, random forest (RF) and support vector regression (SVR)-to demonstrate the superior performance of deep learning algorithms over individual ML ones. We initially gathered WQIs from diverse locations and varying depths within the reservoir using an AAQ-RINKO device in the study area to achieve this. It is important to highlight that, despite utilizing diverse data-driven models in water quality estimation, a significant gap persists in the existing literature regarding implementing a comprehensive hybrid algorithm. This algorithm integrates the wavelet transform, convolutional neural network (CNN), and gated recurrent unit (GRU) methodologies to estimate WQIs accurately within a spatiotemporal framework. Subsequently, the effectiveness of the models that were developed was assessed utilizing various statistical metrics, encompassing the correlation coefficient (r), root mean square error (RMSE), mean absolute error (MAE), and Nash-Sutcliffe efficiency (NSE) throughout both the training and testing phases. The findings demonstrated that the WT-CNN-GRU model exhibited better performance in comparison with the other algorithms by 13% (SVR), 13% (RF), 9% (CNN), and 8% (GRU) when R-squared and DO were considered as evaluation indices and WQIs, respectively.


Subject(s)
Algorithms , Neural Networks, Computer , Water Quality , Machine Learning , Environmental Monitoring/methods , Lakes , Chlorophyll A/analysis , Wavelet Analysis
2.
Environ Sci Pollut Res Int ; 30(60): 126116-126131, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38010543

ABSTRACT

Water pollution escalates with rising waste discharge in river systems, as the rivers' limited pollution tolerance and constrained self-cleaning capacity compel the release of treated pollutants. Although several studies have shown that the non-dominated sorting genetic algorithm-II (NSGA-II) is an effective algorithm regarding the management of river water quality to reach water quality standards, to our knowledge, the literature lacks using a new optimization model, namely, the multi-objective cuckoo optimization algorithm (MOCOA). Therefore, this research introduces a new optimization framework, including non-dominated sorting and ranking selection using the comparison operator densely populated towards the best Pareto front and a trade-off estimation between the goals of discharges and environmental protection authorities. The suggested algorithm is implemented for a waste load allocation issue in Jajrood River, located in the North of Iran. The limitation of this research is that discharges are point sources. To analyze the performance of the new optimization algorithm, the simulation model is linked with a hybrid optimization model using a cuckoo optimization algorithm and non-dominated sorting genetic algorithms to convert a single-objective algorithm to a multi-objective algorithm. The findings indicate that, in terms of violation index and inequity values, MOCOA's Pareto front is superior to NSGA-II, which highlights the MOCOA's effectiveness in waste load allocation. For instance, with identical population sizes and violation indexes for both algorithms, the optimal Pareto front ranges from 1.31 to 2.36 for NSGA-II and 0.379 to 2.28 for MOCOA. This suggests that MOCOA achieves a superior Pareto front in a more efficient timeframe. Additionally, MOCOA can attain optimal equity in the smaller population size.


Subject(s)
Rivers , Water Quality , Water Pollution , Fresh Water , Algorithms
3.
Environ Sci Pollut Res Int ; 30(59): 124316-124340, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37996598

ABSTRACT

Water quality variables, including chlorophyll-a (Chl-a), play a pivotal role in comprehending and evaluating the condition of aquatic ecosystems. Chl-a, a pigment present in diverse aquatic organisms, notably algae and cyanobacteria, serves as a valuable indicator of water quality. Thus, the objectives of this study encompass: (1) the assessment of the predictive capabilities of four deep learning (DL) models - namely, recurrent neural network (RNN), long short-term memory (LSTM), gated recurrence unit (GRU), and temporal convolutional network (TCN) - in forecasting Chl-a concentrations; (2) the incorporation of these DL models into ensemble models (EMs) employing genetic algorithm (GA) and non-dominated sorting genetic algorithm (NSGA-II) to harness the strengths of each standalone model; and (3) the evaluation of the efficacy of the developed EMs. Utilizing data collected at 15-min intervals from Small Prespa Lake (SPL) in Greece, the models employed hourly Chl-a concentration lag times, extending up to 6 h, as models' inputs to forecast Chla (t+1). The proposed models underwent training on 70% of the dataset and were subsequently validated on the remaining 30%. Among the standalone DL models, the GRU model exhibited superior performance in Chl-a forecasting, surpassing the RNN, LSTM, and TCN models by 8%, 2%, and 2%, respectively. Furthermore, the integration of DL models through single-objective GA and multi-objective NSGA-II optimization algorithms yielded hybrid models adept at effectively forecasting both low and high Chl-a concentrations. The ensemble model based on NSGA-II outperformed standalone DL models as well as the GA-based model across a range of evaluation indices. For instance, considering the R-squared metric, the study's findings demonstrated that the EM-NSGA-II stands out with exceptional effectiveness compared to DL and EM-GA models, showcasing improvements of 14% (RNN), 8% (LSTM), 6% (GRU), 8% (TCN), and 3% (EM-GA) during the testing phase.


Subject(s)
Deep Learning , Water Quality , Ecosystem , Neural Networks, Computer , Algorithms , Forecasting
4.
J Environ Manage ; 341: 118006, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37163836

ABSTRACT

Effective prediction of qualitative and quantitative indicators for runoff is quite essential in water resources planning and management. However, although several data-driven and model-driven forecasting approaches have been employed in the literature for streamflow forecasting, to our knowledge, the literature lacks a comprehensive comparison of well-known data-driven and model-driven forecasting techniques for runoff evaluation in terms of quality and quantity. This study filled this knowledge gap by comparing the accuracy of runoff, sediment, and nitrate forecasting using four robust data-driven techniques: artificial neural network (ANN), long short-term memory (LSTM), wavelet artificial neural network (WANN), and wavelet long short-term memory (WLSTM) models. These comparisons were performed in two main tiers: (1) Comparing the machine learning algorithms' results with the model-driven approach; In order to simulate the runoff, sediment, and nitrate loads, the Soil and Water Assessment Tool (SWAT) model was employed, and (2) Comparing the machine learning algorithms with each other; The wavelet function was utilized in the ANN and LSTM algorithms. These comparisons were assessed based on the substantial statistical indices of coefficient of determination (R-Squared), Nash-Sutcliff efficiency coefficient (NSE), mean absolute error (MAE), and root mean square error (RMSE). Finally, to prove the applicability and efficiency of the proposed novel framework, it was successfully applied to Eagle Creek Watershed (ECW), Indiana, U.S. Results demonstrated that the data-driven algorithms significantly outperformed the model-driven models for both the calibration/training and validation/testing phases. Furthermore, it was found that the coupled ANN and LSTM models with wavelet function led to more accurate results than those without this function.


Subject(s)
Neural Networks, Computer , Nitrates , Algorithms , Water Resources , Forecasting
SELECTION OF CITATIONS
SEARCH DETAIL
...