Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 16(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38730664

ABSTRACT

In this systematic review and meta-analysis (PRISMA-compliant), we tried to investigate diagnostic and prognostic values of 18F-FDG PET in uveal melanoma. A systematic search was conducted on the main medical literature databases to include studies that evaluated 18F-FDG PET as the imaging modality to evaluate patients with uveal melanoma. Overall, 27 studies were included. Twelve had data about the detection rate of 18F-FDG PET in primary intra-ocular tumours. The pooled sensitivity was 45% (95%CI: 41-50%). Furthermore, studies showed that the larger the primary tumour, the higher its uptake. Among the included studies, 13 assessed 18F-FDG PET in detecting metastasis. The pooled sensitivity and specificity were 96% (95%CI: 81-99%) and 100% (95%CI: 94-100%), respectively. Regarding liver metastasis, they were 95% (95%CI: 79-99%) and 100% (95%CI: 91-100%), respectively. Noteworthy, the level of 18F-FDG uptake was a strong predictor of patient survival. Lastly, 18F-FDG PET could characterise lesions from the histopathology perspective, distinguishing high-risk from low-risk diseases. Overall, although not reliable in detecting primary intra-ocular tumours, 18F-FDG PET is highly accurate for diagnosing metastatic uveal melanomas. It can also be a highly valuable modality in terms of patient prognostication. Thus, 18F-FDG PET can be recommended in patients diagnosed with uveal melanoma to enhance decision-making and patient management.

2.
Semin Nucl Med ; 54(3): 356-370, 2024 May.
Article in English | MEDLINE | ID: mdl-38172001

ABSTRACT

Recent developments in hybrid SPECT/CT systems and the use of cadmium-zinc-telluride (CZT) detectors have improved the diagnostic accuracy of bone scintigraphy. These advancements have paved the way for novel quantitative approaches to accurate and reproducible treatment monitoring of bone metastases. PET/CT imaging using [18F]F-FDG and [18F]F-NaF have shown promising clinical utility in bone metastases assessment and monitoring response to therapy and prediction of treatment response in a broad range of malignancies. Additionally, specific tumor-targeting tracers like [99mTc]Tc-PSMA, [68Ga]Ga-PSMA, or [11C]C- or [18F]F-Choline revealed high diagnostic performance for early assessment and prognostication of bone metastases, particularly in prostate cancer. PET/MRI appears highly accurate imaging modality, but has associated limitations notably, limited availability, more complex logistics and high installation costs. Advances in artificial intelligence (Al) seem to improve the accuracy of imaging modalities and provide an assistant role in the evaluation of treatment response of bone metastases.


Subject(s)
Bone Neoplasms , Magnetic Resonance Imaging , Positron Emission Tomography Computed Tomography , Single Photon Emission Computed Tomography Computed Tomography , Humans , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/secondary , Positron Emission Tomography Computed Tomography/methods , Magnetic Resonance Imaging/methods , Single Photon Emission Computed Tomography Computed Tomography/methods , Treatment Outcome
3.
Cancers (Basel) ; 16(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38201642

ABSTRACT

We described the diagnostic performance of [18F]F-FDG-PET in malignant melanoma by conducting a comprehensive systematic review and meta-analysis of the existing literature. The study was designed following PRISMA-DTA. Original articles with adequate crude data for meta-analytic calculations that evaluated [18F]F-FDG-PET and compared it with a valid reference standard were considered eligible. The pooled measurements were calculated based on the data level (patient/lesion-based). Regarding sub-groups, diagnostic performances were calculated for local, regional and distant involvement. The bivariate model was employed to calculate sensitivity and specificity. The initial search resulted in 6678 studies. Finally, 100 entered the meta-analysis, containing 82 patient-based (10,403 patients) and 32 lesion-based (6188 lesions) datasets. At patient level, overall, [18F]F-FDG-PET had pooled sensitivity and specificity of 81% (95%CI: 73-87%) and 92% (95%CI: 90-94%), respectively. To detect regional lymph node metastasis, the pooled sensitivity and specificity were 56% (95%CI: 40-72%) and 97% (95%CI: 94-99%), respectively. To detect distant metastasis, they were 88% (95%CI: 81-93%) and 94% (95%CI: 91-96%), respectively. At lesion level, [18F]F-FDG-PET had a pooled sensitivity and specificity of 70% (95%CI: 57-80%) and 94% (95%CI: 88-97%), respectively. Thus, [18F]F-FDG-PET is a valuable diagnostic modality for melanoma assessment. It was accurate in various clinical scenarios. However, despite its high specificity, it showed low sensitivity in detecting regional lymph node metastasis and could not replace lymph node biopsy.

4.
Semin Nucl Med ; 54(1): 97-118, 2024 01.
Article in English | MEDLINE | ID: mdl-37596138

ABSTRACT

Prostate cancer is the second most common cause of malignancy among men, with bone metastasis being a significant source of morbidity and mortality in advanced cases. Detecting and treating bone metastasis at an early stage is crucial to improve the quality of life and survival of prostate cancer patients. This objective strongly relies on imaging studies. While CT and MRI have their specific utilities, they also possess certain drawbacks. Bone scintigraphy, although cost-effective and widely available, presents high false-positive rates. The emergence of PET/CT and PET/MRI, with their ability to overcome the limitations of standard imaging methods, offers promising alternatives for the detection of bone metastasis. Various radiotracers targeting cell division activity or cancer-specific membrane proteins, as well as bone seeking agents, have been developed and tested. The use of positron-emitting isotopes such as fluorine-18 and gallium-68 for labeling allows for a reduced radiation dose and unaffected biological properties. Furthermore, the integration of artificial intelligence (AI) and radiomics techniques in medical imaging has shown significant advancements in reducing interobserver variability, improving accuracy, and saving time. This article provides an overview of the advantages and limitations of bone scan using SPECT and SPECT/CT and PET imaging methods with different radiopharmaceuticals and highlights recent developments in hybrid scanners, AI, and radiomics for the identification of prostate cancer bone metastasis using molecular imaging.


Subject(s)
Bone Neoplasms , Prostatic Neoplasms , Male , Humans , Positron Emission Tomography Computed Tomography/methods , Artificial Intelligence , Quality of Life , Positron-Emission Tomography/methods , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/secondary , Radiopharmaceuticals , Prostatic Neoplasms/pathology , Gallium Radioisotopes
5.
Life (Basel) ; 13(9)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37763283

ABSTRACT

BACKGROUND: Myocardial perfusion imaging (MPI) plays a crucial role in diagnosing coronary artery disease (CAD), with single-photon emission computed tomography (SPECT) being a widely accepted method. The accuracy of MPI relies on image quality and the expertise of physicians. While CZT-SPECT cameras offer advantages, they can be susceptible to attenuation artifacts. Therefore, our objective was to evaluate the diagnostic accuracy of CZT-SPECT and SPECT/CT in a clinical setting. METHOD: We conducted a prospective single-center study involving patients with known or suspected stable ischemic heart disease who underwent SPECT-MPI using CZT-SPECT and SPECT/CT scanners, and the latter was equipped with cardiofocal collimation. Experienced physicians performed analysis and reporting based on automated quantification and visual image interpretation. RESULTS: A total of 77 patients (32 women (41.6%) and 45 men (58.4%) with an average age of 71.9 ± 8.9 years) were included. The agreement between readers regarding the final conclusion based on imaging reporting using both devices was very high (Kappa 0.87-0.93). Per-vessel analysis revealed a trend suggesting that CZT-SPECT was superior to conventional SPECT/CT in terms of sensitivity, positive predictive value (PPV), negative predictive value (NPV), and accuracy, although the difference did not reach statistical significance. CONCLUSION: Our study demonstrated that CZT-SPECT imaging offers comparable diagnostic accuracy, improved patient comfort, and eliminates CT-induced radiation compared to SPECT/CT. These findings suggest that cardiac CZT-SPECT imaging has the potential to become a valuable imaging modality in clinical practice.

SELECTION OF CITATIONS
SEARCH DETAIL
...