Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 11: 1202126, 2023.
Article in English | MEDLINE | ID: mdl-37485316

ABSTRACT

The outbreak of COVID-19, a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, is regarded as the most severe of the documented coronavirus pandemics. The measurement and monitoring of SARS-CoV-2 antibody levels by serological tests are relevant for a better epidemiological and clinical understanding of COVID-19. The aim of this work was to design a method called the SARS-CoV-2 antibody detection method (SARS-CoV-2 AbDM) for fluorescence immunodetection of anti-SARS-CoV-2 IgG and IgM on both plate and microfluidic chip. For this purpose, a system with magnetic beads that immobilize the antigen (S protein and RBD) on its surface was used to determine the presence and quantity of antibodies in a sample in a single reaction. The SARS-CoV-2 AbDM led to several advantages in the performance of the tests, such as reduced cost, possibility of performing isolated or multiple samples, potential of multiplex detection, and capacity to detect whole blood samples without losing resolution. In addition, due to the microfluidic chip in conjunction with the motorized actuated platform, the time, sample quantity, and operator intervention during the process were reduced. All these advantages suggest that the SARS-CoV-2 AbDM has the potential to be developed as a PoC that can be used as a tool for seroprevalence monitoring, allowing a better understanding of the epidemiological and clinical characteristics of COVID-19 and contributing to more effective and ethical decision-making in strategies to fight against the COVID-19 pandemic.

2.
Biosensors (Basel) ; 11(6)2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34203685

ABSTRACT

In spite of a current increasing trend in the development of miniaturized, standalone point-of-care (PoC) biosensing platforms in the literature, the actual implementation of such systems in the field is far from being a reality although deeply needed. In the particular case of the population screenings for local or regional diseases related to specific pathogens, the diagnosis of the presence of specific antibodies could drastically modify therapies and even the organization of public policies. The aim of this work was to develop a fast, cost-effective detection method based on the manipulation of functionalized magnetic beads for an efficient diagnosis of hypersensitivity pneumonitis (HP), looking for the presence of anti-pigeon antigen antibodies (APAA) in a patient's serum. We presented a Diagnostic Biosensor Method (DBM) in detail, with validation by comparison with a traditional high-throughput platform (ELISA assay). We also demonstrated that it was compatible with a microfluidic chip that could be eventually incorporated into a PoC for easy and broad deployment using portable optical detectors. After standardization of the different reaction steps, we constructed and validated a plastic chip that could easily be scaled to high-volume manufacturing in the future. The solution proved comparable to conventional ELISA assays traditionally performed by the clinicians in their laboratory and should be compatible with other antibody detection directly from patient samples.


Subject(s)
Alveolitis, Extrinsic Allergic , Biosensing Techniques , Alveolitis, Extrinsic Allergic/diagnosis , Antibodies , Enzyme-Linked Immunosorbent Assay , Equipment Design , Humans , Immunomagnetic Separation , Lab-On-A-Chip Devices , Microfluidics , Point-of-Care Systems
3.
Polymers (Basel) ; 13(4)2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33672475

ABSTRACT

Following the general aim of recapitulating the native mechanical properties of tissues and organs in vitro, the field of materials science and engineering has benefited from recent progress in developing compliant substrates with physical and chemical properties similar to those of biological materials. In particular, in the field of mechanobiology, soft hydrogels can now reproduce the precise range of stiffnesses of healthy and pathological tissues to study the mechanisms behind cell responses to mechanics. However, it was shown that biological tissues are not only elastic but also relax at different timescales. Cells can, indeed, perceive this dissipation and actually need it because it is a critical signal integrated with other signals to define adhesion, spreading and even more complicated functions. The mechanical characterization of hydrogels used in mechanobiology is, however, commonly limited to the elastic stiffness (Young's modulus) and this value is known to depend greatly on the measurement conditions that are rarely reported in great detail. Here, we report that a simple relaxation test performed under well-defined conditions can provide all the necessary information for characterizing soft materials mechanically, by fitting the dissipation behavior with a generalized Maxwell model (GMM). The simple method was validated using soft polyacrylamide hydrogels and proved to be very useful to readily unveil precise mechanical properties of gels that cells can sense and offer a set of characteristic values that can be compared with what is typically reported from microindentation tests.

4.
Lab Chip ; 19(20): 3512-3525, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31544189

ABSTRACT

The study of mechanotransduction signals and cell response to mechanical properties requires designing culture substrates that possess some, or ideally all, of the following characteristics: (1) biological compatibility and adhesive properties, (2) stiffness control or tunability in a dynamic mode, (3) patternability on the microscale and (4) integrability in microfluidic chips. The most common materials used to address cell mechanotransduction are hydrogels, due to their softness. However, they may be impractical when complex scaffolds are sought and they lack viscous dissipative properties that are very important in mechanobiology. In this work, we show that an off-the-shelf, biocompatible photosensitive glue, Loctite 3525, may be used readily in mechanobiology assays without any special treatment prior to fabrication of cell culture platforms. Despite a high (MPa) stiffness easily tunable by UV exposure time at a fixed dose, 3T3 fibroblasts showed a response to the mechanics of the material similar to that obtained on much softer (kPa) hydrogels. Loctite's viscous dissipation properties indeed seemed to be responsible for such cell mechanical response, as suggested by recent works where more complex two-phase hydrogels were employed. More interestingly, it was possible to stiffen soft Loctite substrates by post-exposing them during cell culture, to observe changes in cell spreading caused by a dynamic stiffness modification. Thanks to Loctite 3525's patternability, micropillars were also fabricated to demonstrate the compatibility with traction force microscopy studies. Finally, the glue was used as an excellent adhesion layer for hydrogels on glass or PDMS, without the need for additional treatment, enabling the easy fabrication of microfluidic chips integrating hydrogels.


Subject(s)
Cell Culture Techniques/methods , Methacrylates/chemistry , Microfluidics/instrumentation , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Culture Techniques/instrumentation , Cell Line , Elastic Modulus , Focal Adhesions/drug effects , Humans , Hydrogels/chemistry , Mechanotransduction, Cellular/physiology , Methacrylates/pharmacology , Mice , Ultraviolet Rays
5.
Micromachines (Basel) ; 10(9)2019 Aug 30.
Article in English | MEDLINE | ID: mdl-31480301

ABSTRACT

Microfluidics has become a very promising technology in recent years, due to its great potential to revolutionize life-science solutions. Generic microfabrication processes have been progressively made available to academic laboratories thanks to cost-effective soft-lithography techniques and enabled important progress in applications like lab-on-chip platforms using rapid- prototyping. However, micron-sized features are required in most designs, especially in biomimetic cell culture platforms, imposing elevated costs of production associated with lithography and limiting the use of such devices. In most cases, however, only a small portion of the structures require high-resolution and cost may be decreased. In this work, we present a replica-molding method separating the fabrication steps of low (macro) and high (micro) resolutions and then merging the two scales in a single chip. The method consists of fabricating the largest possible area in inexpensive macromolds using simple techniques such as plastics micromilling, laser microfabrication, or even by shrinking printed polystyrene sheets. The microfeatures were made on a separated mold or onto existing macromolds using photolithography or 2-photon lithography. By limiting the expensive area to the essential, the time and cost of fabrication can be reduced. Polydimethylsiloxane (PDMS) microfluidic chips were successfully fabricated from the constructed molds and tested to validate our micro-macro method.

6.
ACS Biomater Sci Eng ; 5(9): 4219-4227, 2019 Sep 09.
Article in English | MEDLINE | ID: mdl-33417779

ABSTRACT

Polyacrylamide (PAA) hydrogels are now widely used in mechanobiology because the well-defined available protocols allow a robust and reproducible control of substrate stiffness within a physiological range. However, several assays require hydrogels inside traditional plastic substrates and the current methods remain relatively tedious. Here, we present a simple and direct fabrication technique that successfully attaches PAA hydrogels inside polystyrene multiwell plates and Petri dishes of different sizes. It permits a control of the Young's modulus of the gels, within the desired range for mechanobiology. Some critical steps, that had to be overcome to guarantee protein conjugation and cell attachment, are detailed, as they differ from the standardized preparation on glass substrates. To validate our process, we demonstrated that HepG2 and 3T3L1 cell lines as well as primary hepatocytes seeded on PAA gels of different stiffnesses in plastics showed a mechanical response identical to the cells cultured on traditional gels.

7.
Micromachines (Basel) ; 9(4)2018 Apr 16.
Article in English | MEDLINE | ID: mdl-30424120

ABSTRACT

The development of organ-on-chip and biological scaffolds is currently requiring simpler methods for microstructure biocompatible materials in three dimensions, to fabricate structural and functional elements in biomaterials, or modify the physicochemical properties of desired substrates. Aiming at addressing this need, a low-power CD-DVD-Blu-ray laser pickup head was mounted on a programmable three-axis micro-displacement system in order to modify the surface of polymeric materials in a local fashion. Thanks to a specially-designed method using a strongly absorbing additive coating the materials of interest, it has been possible to establish and precisely control processes useful in microtechnology for biomedical applications. The system was upgraded with Blu-ray laser for additive manufacturing and ablation on a single platform. In this work, we present the application of these fabrication techniques to the development of biomimetic cellular culture platforms thanks to the simple integration of several features typically achieved with traditional, less cost-effective microtechnology methods in one step or through replica-molding. Our straightforward approach indeed enables great control of local laser microablation or polymerization for true on-demand biomimetic micropatterned designs in transparent polymers and hydrogels and is allowing integration of microfluidics, microelectronics, surface microstructuring, and transfer of superficial protein micropatterns on a variety of biocompatible materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...