Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Nature ; 618(7964): 374-382, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37225988

ABSTRACT

Cancer alters the function of multiple organs beyond those targeted by metastasis1,2. Here we show that inflammation, fatty liver and dysregulated metabolism are hallmarks of systemically affected livers in mouse models and in patients with extrahepatic metastasis. We identified tumour-derived extracellular vesicles and particles (EVPs) as crucial mediators of cancer-induced hepatic reprogramming, which could be reversed by reducing tumour EVP secretion via depletion of Rab27a. All EVP subpopulations, exosomes and principally exomeres, could dysregulate hepatic function. The fatty acid cargo of tumour EVPs-particularly palmitic acid-induced secretion of tumour necrosis factor (TNF) by Kupffer cells, generating a pro-inflammatory microenvironment, suppressing fatty acid metabolism and oxidative phosphorylation, and promoting fatty liver formation. Notably, Kupffer cell ablation or TNF blockade markedly decreased tumour-induced fatty liver generation. Tumour implantation or pre-treatment with tumour EVPs diminished cytochrome P450 gene expression and attenuated drug metabolism in a TNF-dependent manner. We also observed fatty liver and decreased cytochrome P450 expression at diagnosis in tumour-free livers of patients with pancreatic cancer who later developed extrahepatic metastasis, highlighting the clinical relevance of our findings. Notably, tumour EVP education enhanced side effects of chemotherapy, including bone marrow suppression and cardiotoxicity, suggesting that metabolic reprogramming of the liver by tumour-derived EVPs may limit chemotherapy tolerance in patients with cancer. Our results reveal how tumour-derived EVPs dysregulate hepatic function and their targetable potential, alongside TNF inhibition, for preventing fatty liver formation and enhancing the efficacy of chemotherapy.


Subject(s)
Extracellular Vesicles , Fatty Acids , Fatty Liver , Liver , Pancreatic Neoplasms , Animals , Mice , Cytochrome P-450 Enzyme System/genetics , Extracellular Vesicles/metabolism , Fatty Acids/metabolism , Fatty Liver/drug therapy , Fatty Liver/etiology , Fatty Liver/metabolism , Fatty Liver/prevention & control , Liver/metabolism , Liver/pathology , Liver/physiopathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Tumor Microenvironment , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism , Liver Neoplasms/secondary , Humans , Inflammation/metabolism , Palmitic Acid/metabolism , Kupffer Cells , Oxidative Phosphorylation , rab27 GTP-Binding Proteins/deficiency
2.
Cancers (Basel) ; 14(12)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35740692

ABSTRACT

Cancer-related mortality is primarily a consequence of metastatic dissemination and associated complications. Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies and tends to metastasize early, especially in the liver. Emerging evidence suggests that organs that develop metastases exhibit microscopic changes that favor metastatic growth, collectively known as "pre-metastatic niches". By definition, a pre-metastatic niche is chronologically established before overt metastatic outgrowth, and its generation involves the release of tumor-derived secreted factors that modulate cells intrinsic to the recipient organ, as well as recruitment of additional cells from tertiary sites, such as bone marrow-all orchestrated by the primary tumor. The pre-metastatic niche is characterized by tumor-promoting inflammation with tumor-supportive and immune-suppressive features, remodeling of the extracellular matrix, angiogenic modulation and metabolic alterations that support growth of disseminated tumor cells. In this paper, we review the current state of knowledge of the hepatic pre-metastatic niche in PDAC and attempt to create a framework to guide future diagnostic and therapeutic studies.

3.
Ann Surg Oncol ; 29(8): 4962-4974, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35366706

ABSTRACT

BACKGROUND: Liver metastasis (LM) after pancreatic ductal adenocarcinoma (PDAC) resection is common but difficult to predict and has grave prognosis. We combined preoperative clinicopathological variables and quantitative analysis of computed tomography (CT) imaging to predict early LM. METHODS: We retrospectively evaluated patients with PDAC submitted to resection between 2005 and 2014 and identified clinicopathological variables associated with early LM. We performed liver radiomic analysis on preoperative contrast-enhanced CT scans and developed a logistic regression classifier to predict early LM (< 6 months). RESULTS: In 688 resected PDAC patients, there were 516 recurrences (75%). The cumulative incidence of LM at 5 years was 41%, and patients who developed LM first (n = 194) had the lowest 1-year overall survival (OS) (34%), compared with 322 patients who developed extrahepatic recurrence first (61%). Independent predictors of time to LM included poor tumor differentiation (hazard ratio (HR) = 2.30; P < 0.001), large tumor size (HR = 1.17 per 2-cm increase; P = 0.048), lymphovascular invasion (HR = 1.50; P = 0.015), and liver Fibrosis-4 score (HR = 0.89 per 1-unit increase; P = 0.029) on multivariate analysis. A model using radiomic variables that reflect hepatic parenchymal heterogeneity identified patients at risk for early LM with an area under the receiver operating characteristic curve (AUC) of 0.71; the performance of the model was improved by incorporating preoperative clinicopathological variables (tumor size and differentiation status; AUC = 0.74, negative predictive value (NPV) = 0.86). CONCLUSIONS: We confirm the adverse survival impact of early LM after resection of PDAC. We further show that a model using radiomic data from preoperative imaging combined with tumor-related variables has great potential for identifying patients at high risk for LM and may help guide treatment selection.


Subject(s)
Carcinoma, Pancreatic Ductal , Liver Neoplasms , Pancreatic Neoplasms , Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/surgery , Humans , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/pathology , Liver Neoplasms/surgery , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/surgery , Retrospective Studies , Pancreatic Neoplasms
7.
Ann Surg Oncol ; 28(1): 539-549, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32451945

ABSTRACT

BACKGROUND: The association between a positive surgical margin and local recurrence after resection of pancreatic adenocarcinoma (PDAC) has been reported. Assessment of the location of the a positive margin and the specific site of local recurrence has not been well described. METHODS: A prospectively maintained database was queried for patients who underwent R0/R1 pancreaticoduodenectomy for PDAC between 2000 and 2015. The pancreatic, posterior, gastric/duodenal, anterior peritoneal, and bile duct margins were routinely assessed. Postoperative imaging was reviewed for the site of first recurrence, and local recurrence was defined as recurrence located in the remnant pancreas, surgical bed, or retroperitoneal site outside the surgical bed. RESULTS: During the study period, 891 patients underwent pancreaticoduodenectomy, and 390 patients had an initial local recurrence with or without distant metastases. The 5-year cumulative incidence of local recurrence by site included the remnant pancreas (4%; 95% confidence interval [CI], 3-5%), the surgical bed (35%; 95% CI, 32-39%), and other regional retroperitoneal site (4%; 95% CI, 3-6%). In the univariate analysis, positive posterior margin (hazard ratio [HR], 1.50; 95% CI, 1.17-1.91; p = 0.001) and positive lymph nodes (HR, 1.36; 95% CI, 1.06-1.75; p = 0.017) were associated with surgical bed recurrence, and in the multivariate analysis, positive posterior margin remained significant (HR, 1.40; 95% CI, 1.09-1.81; p = 0.009). An isolated local recurrence was found in 197 patients, and a positive posterior margin was associated with surgical bed recurrence in this subgroup (HR, 1.51; 95% CI, 1.08-2.10; p = 0.016). CONCLUSION: In this study, the primary association between site of margin positivity and site of local recurrence was between the posterior margin and surgical bed recurrence. Given this association and the limited ability to modify this margin intraoperatively, preoperative assessment should be emphasized.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Pancreaticoduodenectomy , Adenocarcinoma/surgery , Aged , Female , Humans , Male , Margins of Excision , Middle Aged , Neoplasm Recurrence, Local , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/surgery
8.
Sci Rep ; 10(1): 15664, 2020 09 24.
Article in English | MEDLINE | ID: mdl-32973235

ABSTRACT

Changes in the elastic properties of living tissues during normal development and in pathological processes are often due to modifications of the collagen component of the extracellular matrix at various length scales. Force volume AFM can precisely capture the mechanical properties of biological samples with force sensitivity and spatial resolution. The integration of AFM data with data of the molecular composition contributes to understanding the interplay between tissue biochemistry, organization and function. The detection of micrometer-size, heterogeneous domains at different elastic moduli in tissue sections by AFM has remained elusive so far, due to the lack of correlations with histological, optical and biochemical assessments. In this work, force volume AFM is used to identify collagen-enriched domains, naturally present in human and mouse tissues, by their elastic modulus. Collagen identification is obtained in a robust way and affordable timescales, through an optimal design of the sample preparation method and AFM parameters for faster scan with micrometer resolution. The choice of a separate reference sample stained for collagen allows correlating elastic modulus with collagen amount and position with high statistical significance. The proposed preparation method ensures safe handling of the tissue sections guarantees the preservation of their micromechanical characteristics over time and makes it much easier to perform correlation experiments with different biomarkers independently.


Subject(s)
Collagen/metabolism , Microscopy, Atomic Force , Analytic Sample Preparation Methods , Animals , Biomechanical Phenomena , Cryopreservation , Humans , Mice , Organ Specificity , Protein Transport , Tissue Fixation
9.
Cell ; 182(4): 1044-1061.e18, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32795414

ABSTRACT

There is an unmet clinical need for improved tissue and liquid biopsy tools for cancer detection. We investigated the proteomic profile of extracellular vesicles and particles (EVPs) in 426 human samples from tissue explants (TEs), plasma, and other bodily fluids. Among traditional exosome markers, CD9, HSPA8, ALIX, and HSP90AB1 represent pan-EVP markers, while ACTB, MSN, and RAP1B are novel pan-EVP markers. To confirm that EVPs are ideal diagnostic tools, we analyzed proteomes of TE- (n = 151) and plasma-derived (n = 120) EVPs. Comparison of TE EVPs identified proteins (e.g., VCAN, TNC, and THBS2) that distinguish tumors from normal tissues with 90% sensitivity/94% specificity. Machine-learning classification of plasma-derived EVP cargo, including immunoglobulins, revealed 95% sensitivity/90% specificity in detecting cancer. Finally, we defined a panel of tumor-type-specific EVP proteins in TEs and plasma, which can classify tumors of unknown primary origin. Thus, EVP proteins can serve as reliable biomarkers for cancer detection and determining cancer type.


Subject(s)
Biomarkers, Tumor/metabolism , Extracellular Vesicles/metabolism , Neoplasms/diagnosis , Animals , Biomarkers, Tumor/blood , Cell Line , HSC70 Heat-Shock Proteins/metabolism , Humans , Machine Learning , Mice , Mice, Inbred C57BL , Microfilament Proteins/metabolism , Neoplasms/metabolism , Proteome/analysis , Proteome/metabolism , Proteomics/methods , Sensitivity and Specificity , Tetraspanin 29/metabolism , rap GTP-Binding Proteins/metabolism
10.
HPB (Oxford) ; 22(8): 1224, 2020 08.
Article in English | MEDLINE | ID: mdl-32563595

ABSTRACT

We suggest two potential theories that could explain how low union of the cystic and common hepatic duct may be related to heightened risk for pancreatic ductal adenocarcinoma, as observed by the study by Muraki et al.


Subject(s)
Adenocarcinoma , Ampulla of Vater , Common Bile Duct Neoplasms , Duodenal Neoplasms , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/diagnostic imaging
11.
Am J Surg ; 216(5): 963-968, 2018 11.
Article in English | MEDLINE | ID: mdl-30143231

ABSTRACT

BACKGROUND: Metastatic squamous cell carcinoma (SCC) to the axillary or inguinal lymph nodes from an unknown primary source is rarely encountered. We sought to evaluate a cohort of patients with metastatic SCC managed by lymphadenectomy to determine their survival and to determine which clinicopathologic factors were associated with outcome. METHODS: All patients undergoing axillary or inguinal lymphadenectomy for SCC at our institution were identified retrospectively. Patients were stratified by unknown primary (UP) vs known skin primary (KP) tumors. Pertinent data on patient, tumor, and treatment variables was collected. RESULTS: We identified 51 patients who met inclusion criteria. Of those, 20 patients (39%) had UP metastatic SCC and 31 patients (61%) had KP. The 5-year overall survival for UP was 65%, as compared to 49% for KP (p = 0.16). Cumulative incidence of recurrence was 46%. Cox regression failed to demonstrate a significant association between KP vs UP, HPV status, chemotherapy, or radiation with survival. CONCLUSIONS: Nearly two-thirds of patients undergoing axillary or inguinal lymphadenectomy for metastatic SCC of unknown primary were alive five years following the procedure.


Subject(s)
Carcinoma, Squamous Cell/secondary , Carcinoma, Squamous Cell/surgery , Lymph Node Excision , Neoplasms, Unknown Primary/pathology , Neoplasms, Unknown Primary/surgery , Skin Neoplasms/pathology , Adult , Aged , Aged, 80 and over , Axilla , Carcinoma, Squamous Cell/mortality , Cohort Studies , Female , Humans , Inguinal Canal , Lymphatic Metastasis , Male , Middle Aged , Neoplasms, Unknown Primary/mortality , Retrospective Studies , Skin Neoplasms/mortality , Skin Neoplasms/therapy , Survival Rate , Treatment Outcome
12.
Cancer Discov ; 8(4): 403-416, 2018 04.
Article in English | MEDLINE | ID: mdl-29567829

ABSTRACT

We found that the cancerous pancreas harbors a markedly more abundant microbiome compared with normal pancreas in both mice and humans, and select bacteria are differentially increased in the tumorous pancreas compared with gut. Ablation of the microbiome protects against preinvasive and invasive pancreatic ductal adenocarcinoma (PDA), whereas transfer of bacteria from PDA-bearing hosts, but not controls, reverses tumor protection. Bacterial ablation was associated with immunogenic reprogramming of the PDA tumor microenvironment, including a reduction in myeloid-derived suppressor cells and an increase in M1 macrophage differentiation, promoting TH1 differentiation of CD4+ T cells and CD8+ T-cell activation. Bacterial ablation also enabled efficacy for checkpoint-targeted immunotherapy by upregulating PD-1 expression. Mechanistically, the PDA microbiome generated a tolerogenic immune program by differentially activating select Toll-like receptors in monocytic cells. These data suggest that endogenous microbiota promote the crippling immune-suppression characteristic of PDA and that the microbiome has potential as a therapeutic target in the modulation of disease progression.Significance: We found that a distinct and abundant microbiome drives suppressive monocytic cellular differentiation in pancreatic cancer via selective Toll-like receptor ligation leading to T-cell anergy. Targeting the microbiome protects against oncogenesis, reverses intratumoral immune tolerance, and enables efficacy for checkpoint-based immunotherapy. These data have implications for understanding immune suppression in pancreatic cancer and its reversal in the clinic. Cancer Discov; 8(4); 403-16. ©2018 AACR.See related commentary by Riquelme et al., p. 386This article is highlighted in the In This Issue feature, p. 371.


Subject(s)
Carcinogenesis , Microbiota , Monocytes/physiology , Pancreatic Neoplasms/microbiology , Toll-Like Receptors/metabolism , Animals , Bacteria , Cell Differentiation , Female , Humans , Male , Mice , Monocytes/immunology , Monocytes/metabolism , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Signal Transduction
13.
HPB (Oxford) ; 20(7): 597-604, 2018 07.
Article in English | MEDLINE | ID: mdl-29339034

ABSTRACT

BACKGROUND: Exosomes are nanovesicles that have been shown to mediate carcinogenesis in pancreatic ductal adenocarcinoma (PDAC). Given the direct communication of pancreatic duct fluid with the tumor and its relative accessibility, we aimed to determine the feasibility of isolating and characterizing exosomes from pancreatic duct fluid. METHODS: Pancreatic duct fluid was collected from 26 patients with PDAC (n = 13), intraductal papillary mucinous neoplasm (IPMN) (n = 8) and other benign pancreatic diseases (n = 5) at resection. Exosomes were isolated by serial ultracentrifugation, proteins were identified by mass spectrometry, and their expression was evaluated by immunohistochemistry. RESULTS: Exosomes were isolated from all specimens with a mean concentration of 5.9 ± 1 × 108 particles/mL and most frequent size of 138 ± 9 nm. Among the top 35 proteins that were significantly associated with PDAC, multiple carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) and extracellular matrix (ECM) proteins were identified. Interestingly, CEACAM 1/5 expression by immunohistochemistry was seen only on tumor epithelia whereas tenascin C positivity was restricted to stroma, suggesting that both tumor and stromal cells contributed to exosomes. CONCLUSION: This is the first study showing that exosome isolation is feasible from pancreatic duct fluid, and that exosomal proteins may be utilized to diagnose patients with PDAC.


Subject(s)
Biomarkers, Tumor/analysis , Carcinoma, Pancreatic Ductal/chemistry , Cell Adhesion Molecules/analysis , Exosomes/chemistry , Extracellular Matrix Proteins/analysis , Pancreatic Ducts/chemistry , Pancreatic Intraductal Neoplasms/chemistry , Pancreatic Juice/chemistry , Pancreatic Neoplasms/chemistry , Aged , Aged, 80 and over , Carcinoma, Pancreatic Ductal/pathology , Feasibility Studies , Female , Humans , Immunohistochemistry , Male , Mass Spectrometry , Middle Aged , Pancreatic Ducts/pathology , Pancreatic Intraductal Neoplasms/pathology , Pancreatic Neoplasms/pathology , Pilot Projects , Predictive Value of Tests , Ultracentrifugation
14.
Nat Med ; 23(5): 556-567, 2017 May.
Article in English | MEDLINE | ID: mdl-28394331

ABSTRACT

The progression of pancreatic oncogenesis requires immune-suppressive inflammation in cooperation with oncogenic mutations. However, the drivers of intratumoral immune tolerance are uncertain. Dectin 1 is an innate immune receptor crucial for anti-fungal immunity, but its role in sterile inflammation and oncogenesis has not been well defined. Furthermore, non-pathogen-derived ligands for dectin 1 have not been characterized. We found that dectin 1 is highly expressed on macrophages in pancreatic ductal adenocarcinoma (PDA). Dectin 1 ligation accelerated the progression of PDA in mice, whereas deletion of Clec7a-the gene encoding dectin 1-or blockade of dectin 1 downstream signaling was protective. We found that dectin 1 can ligate the lectin galectin 9 in mouse and human PDA, which results in tolerogenic macrophage programming and adaptive immune suppression. Upon disruption of the dectin 1-galectin 9 axis, CD4+ and CD8+ T cells, which are dispensable for PDA progression in hosts with an intact signaling axis, become reprogrammed into indispensable mediators of anti-tumor immunity. These data suggest that targeting dectin 1 signaling is an attractive strategy for developing an immunotherapy for PDA.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Galectins/metabolism , Lectins, C-Type/genetics , Pancreatic Neoplasms/genetics , Tumor Escape/genetics , Animals , Blotting, Western , Carcinogenesis/genetics , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/metabolism , Epithelial Cells/metabolism , Flow Cytometry , Gene Knockdown Techniques , Humans , Immune Tolerance/genetics , Immunohistochemistry , Immunoprecipitation , Lectins, C-Type/immunology , Lectins, C-Type/metabolism , Mass Spectrometry , Mice , Mice, Knockout , Pancreatic Ducts/cytology , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/metabolism , Syk Kinase/genetics , Syk Kinase/metabolism , Tumor Escape/immunology
15.
Trends Mol Med ; 23(5): 465-481, 2017 05.
Article in English | MEDLINE | ID: mdl-28400243

ABSTRACT

Homeostasis is a fundamental property of living organisms enabling the human body to withstand internal and external insults. In several chronic diseases, and especially in cancer, many homeostatic mechanisms are deranged. Pancreatic cancer in particular is notorious for its ability to invoke an intense fibroinflammatory stromal reaction facilitating its progression and resistance to treatment. In the past decade, several seminal discoveries have elucidated previously unrecognized modes of commandeering the host's defense systems. Here we review novel discoveries in pancreatic cancer immunobiology and attempt to integrate the notion of deranged homeostasis in the pathogenesis of this disease. We also highlight areas of controversy and obstacles that need to be overcome, hoping to further our mechanistic insight into this malignancy.


Subject(s)
Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/metabolism , Animals , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Humans , Pancreatic Neoplasms/pathology , Stromal Cells/immunology , Stromal Cells/metabolism , Stromal Cells/pathology , Tumor Microenvironment/immunology
16.
Nature ; 532(7598): 245-9, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-27049944

ABSTRACT

Neoplastic pancreatic epithelial cells are believed to die through caspase 8-dependent apoptotic cell death, and chemotherapy is thought to promote tumour apoptosis. Conversely, cancer cells often disrupt apoptosis to survive. Another type of programmed cell death is necroptosis (programmed necrosis), but its role in pancreatic ductal adenocarcinoma (PDA) is unclear. There are many potential inducers of necroptosis in PDA, including ligation of tumour necrosis factor receptor 1 (TNFR1), CD95, TNF-related apoptosis-inducing ligand (TRAIL) receptors, Toll-like receptors, reactive oxygen species, and chemotherapeutic drugs. Here we report that the principal components of the necrosome, receptor-interacting protein (RIP)1 and RIP3, are highly expressed in PDA and are further upregulated by the chemotherapy drug gemcitabine. Blockade of the necrosome in vitro promoted cancer cell proliferation and induced an aggressive oncogenic phenotype. By contrast, in vivo deletion of RIP3 or inhibition of RIP1 protected against oncogenic progression in mice and was associated with the development of a highly immunogenic myeloid and T cell infiltrate. The immune-suppressive tumour microenvironment associated with intact RIP1/RIP3 signalling depended in part on necroptosis-induced expression of the chemokine attractant CXCL1, and CXCL1 blockade protected against PDA. Moreover, cytoplasmic SAP130 (a subunit of the histone deacetylase complex) was expressed in PDA in a RIP1/RIP3-dependent manner, and Mincle--its cognate receptor--was upregulated in tumour-infiltrating myeloid cells. Ligation of Mincle by SAP130 promoted oncogenesis, whereas deletion of Mincle protected against oncogenesis and phenocopied the immunogenic reprogramming of the tumour microenvironment that was induced by RIP3 deletion. Cellular depletion suggested that whereas inhibitory macrophages promote tumorigenesis in PDA, they lose their immune-suppressive effects when RIP3 or Mincle is deleted. Accordingly, T cells, which are not protective against PDA progression in mice with intact RIP3 or Mincle signalling, are reprogrammed into indispensable mediators of anti-tumour immunity in the absence of RIP3 or Mincle. Our work describes parallel networks of necroptosis-induced CXCL1 and Mincle signalling that promote macrophage-induced adaptive immune suppression and thereby enable PDA progression.


Subject(s)
Carcinogenesis , Chemokine CXCL1/metabolism , Immune Tolerance , Lectins, C-Type/metabolism , Membrane Proteins/metabolism , Necrosis , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Adenocarcinoma/immunology , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Animals , Apoptosis/drug effects , Carcinogenesis/drug effects , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Chemokine CXCL1/antagonists & inhibitors , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Disease Progression , Female , GTPase-Activating Proteins/metabolism , Gene Expression Regulation, Neoplastic , Humans , Lectins, C-Type/immunology , Male , Membrane Proteins/immunology , Mice , Mice, Inbred C57BL , Pancreatic Neoplasms/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Up-Regulation , Gemcitabine
17.
Cell Rep ; 13(9): 1909-1921, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26655905

ABSTRACT

Dectin-1 is a C-type lectin receptor critical in anti-fungal immunity, but Dectin-1 has not been linked to regulation of sterile inflammation or oncogenesis. We found that Dectin-1 expression is upregulated in hepatic fibrosis and liver cancer. However, Dectin-1 deletion exacerbates liver fibro-inflammatory disease and accelerates hepatocarcinogenesis. Mechanistically, we found that Dectin-1 protects against chronic liver disease by suppressing TLR4 signaling in hepatic inflammatory and stellate cells. Accordingly, Dectin-1(-/-) mice exhibited augmented cytokine production and reduced survival in lipopolysaccharide (LPS)-mediated sepsis, whereas Dectin-1 activation was protective. We showed that Dectin-1 inhibits TLR4 signaling by mitigating TLR4 and CD14 expression, which are regulated by Dectin-1-dependent macrophage colony stimulating factor (M-CSF) expression. Our study suggests that Dectin-1 is an attractive target for experimental therapeutics in hepatic fibrosis and neoplastic transformation. More broadly, our work deciphers critical cross-talk between pattern recognition receptors and implicates a role for Dectin-1 in suppression of sterile inflammation, inflammation-induced oncogenesis, and LPS-mediated sepsis.


Subject(s)
Lectins, C-Type/metabolism , Liver Cirrhosis/pathology , Liver Neoplasms/pathology , Toll-Like Receptor 4/metabolism , Animals , Cell Transformation, Neoplastic/drug effects , Cells, Cultured , Chemokine CCL2/blood , Cytokines/metabolism , Diethylnitrosamine/toxicity , Hepatocytes/cytology , Hepatocytes/metabolism , Humans , Inflammation , Lectins, C-Type/deficiency , Lectins, C-Type/genetics , Lipopolysaccharide Receptors/metabolism , Lipopolysaccharides/toxicity , Liver/metabolism , Liver/pathology , Liver Cirrhosis/chemically induced , Liver Cirrhosis/metabolism , Liver Neoplasms/chemically induced , Liver Neoplasms/metabolism , Macrophage Colony-Stimulating Factor/genetics , Macrophage Colony-Stimulating Factor/metabolism , Macrophage Colony-Stimulating Factor/pharmacology , Mice , Mice, Inbred C57BL , Mice, Knockout , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Recombinant Proteins/pharmacology , Sepsis/etiology , Signal Transduction/drug effects , Thioacetamide/toxicity , Toll-Like Receptor 4/antagonists & inhibitors , Up-Regulation/drug effects
18.
J Exp Med ; 212(12): 2077-94, 2015 Nov 16.
Article in English | MEDLINE | ID: mdl-26481685

ABSTRACT

Modulation of Toll-like receptor (TLR) signaling can have protective or protumorigenic effects on oncogenesis depending on the cancer subtype and on specific inflammatory elements within the tumor milieu. We found that TLR9 is widely expressed early during the course of pancreatic transformation and that TLR9 ligands are ubiquitous within the tumor microenvironment. TLR9 ligation markedly accelerates oncogenesis, whereas TLR9 deletion is protective. We show that TLR9 activation has distinct effects on the epithelial, inflammatory, and fibrogenic cellular subsets in pancreatic carcinoma and plays a central role in cross talk between these compartments. Specifically, TLR9 activation can induce proinflammatory signaling in transformed epithelial cells, but does not elicit oncogene expression or cancer cell proliferation. Conversely, TLR9 ligation induces pancreatic stellate cells (PSCs) to become fibrogenic and secrete chemokines that promote epithelial cell proliferation. TLR9-activated PSCs mediate their protumorigenic effects on the epithelial compartment via CCL11. Additionally, TLR9 has immune-suppressive effects in the tumor microenvironment (TME) via induction of regulatory T cell recruitment and myeloid-derived suppressor cell proliferation. Collectively, our work shows that TLR9 has protumorigenic effects in pancreatic carcinoma which are distinct from its influence in extrapancreatic malignancies and from the mechanistic effects of other TLRs on pancreatic oncogenesis.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Stellate Cells/metabolism , Toll-Like Receptor 9/metabolism , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Cells, Cultured , Chemokine CCL11/metabolism , Chemokines/metabolism , Epithelial Cells/metabolism , Immunoblotting , Ligands , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Confocal , Oligodeoxyribonucleotides/pharmacology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Signal Transduction/genetics , Toll-Like Receptor 9/genetics , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics
19.
J Immunol ; 193(11): 5557-66, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25339667

ABSTRACT

Adoptive immunotherapy using γδ T cells harnesses their natural role in tumor immunosurveillance. The efficacy of this approach is enhanced by aminobisphosphonates such as zoledronic acid and alendronic acid, both of which promote the accumulation of stimulatory phosphoantigens in target cells. However, the inefficient and nonselective uptake of these agents by tumor cells compromises the effective clinical exploitation of this principle. To overcome this, we have encapsulated aminobisphosphonates within liposomes. Expanded Vγ9Vδ2 T cells from patients and healthy donors displayed similar phenotype and destroyed autologous and immortalized ovarian tumor cells, following earlier pulsing with either free or liposome-encapsulated aminobisphosphonates. However, liposomal zoledronic acid proved highly toxic to SCID Beige mice. By contrast, the maximum tolerated dose of liposomal alendronic acid was 150-fold higher, rendering it much more suited to in vivo use. When injected into the peritoneal cavity, free and liposomal alendronic acid were both highly effective as sensitizing agents, enabling infused γδ T cells to promote the regression of established ovarian tumors by over one order of magnitude. Importantly however, liposomal alendronic acid proved markedly superior compared with free drug following i.v. delivery, exploiting the "enhanced permeability and retention effect" to render advanced tumors susceptible to γδ T cell-mediated shrinkage. Although folate targeting of liposomes enhanced the sensitization of folate receptor-α(+) ovarian tumor cells in vitro, this did not confer further therapeutic advantage in vivo. These findings support the development of an immunotherapeutic approach for ovarian and other tumors in which adoptively infused γδ T cells are targeted using liposomal alendronic acid.


Subject(s)
Alendronate/administration & dosage , Carcinoma/therapy , Immunotherapy, Adoptive/methods , Ovarian Neoplasms/therapy , T-Lymphocytes/drug effects , Alendronate/chemistry , Animals , Carcinoma/immunology , Cell Line, Tumor , Cytotoxicity, Immunologic , Female , Humans , Immunization , Liposomes/chemistry , Mice , Mice, SCID , Ovarian Neoplasms/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/transplantation , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
20.
Cancer J ; 20(3): 195-202, 2014.
Article in English | MEDLINE | ID: mdl-24855007

ABSTRACT

Pancreatic cancer is one of the most lethal cancers worldwide. No effective screening methods exist, and available treatment modalities do not effectively treat the disease. Inflammatory conditions such as pancreatitis represent a well-known risk factor for pancreatic cancer development. Yet only in the past 2 decades has pancreatic cancer been recognized as an inflammation-driven cancer, and the precise mechanisms underlying the pathogenic role of inflammation are beginning to be explored in detail. A substantial amount of preclinical and clinical evidence suggests that bacteria are likely to influence this process by activating immune receptors and perpetuating cancer-associated inflammation. The recent explosion of investigations of the human microbiome have highlighted how perturbations of commensal bacterial populations can promote inflammation and promote disease processes, including carcinogenesis. The elucidation of the interplay between inflammation and microbiome in the context of pancreatic carcinogenesis will provide novel targets for intervention to prevent and treat pancreatic cancer more efficiently. Further studies toward this direction are urgently needed.


Subject(s)
Inflammation/microbiology , Inflammation/pathology , Microbiota , Pancreatic Neoplasms/microbiology , Pancreatic Neoplasms/pathology , Animals , Humans , Inflammation/immunology , Pancreatic Neoplasms/immunology , Risk Factors , Pancreatic Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL
...